Sites Grátis no Comunidades.net

Cenemática
Cenemática

Professor Diminoi

Importância da Física

A Física contribuiu e ainda contribui de maneira imensurável para o desenvolvimento humano. Daí a importância da Física para o nosso dia a dia.

Professor e aluno fazendo análise de dados

Desde a Antiguidade o ser humano demonstra curiosidade a respeito da natureza que o cerca. Naqueles tempos remotos já existia o desejo de compreender fenômenos, buscar respostas, solucionar problemas que interferiam de uma forma ou outra na vida da sociedade. Tales de Mileto, filósofo grego do século VI a.C, já observava que quando atritava uma resina fossilizada, chamada âmbar, em pele de animais, essa resina passava a atrair pequenos objetos, como pedaços de palha. Sabemos hoje que aquele fenômeno era de natureza elétrica. Ao longo da história, diversos foram os pensadores e filósofos que se lançaram em busca de respostas para de certa forma retirar a humanidade daquele vazio obscuro da falta de conhecimento a respeito da natureza que a cercava. Entre os mais importantes está Aristóteles de Estagira (384 a.C – 322 a.C), filósofo da Grécia antiga, que é considerado o pai da lógica, da metafísica, das Ciências Naturais, entre outras. E à medida que o tempo foi passando, diversos pensadores foram dando sua contribuição para o crescimento do conhecimento, de tal forma que esse conhecimento precisou ser divido em áreas para que pudesse se desenvolver ainda mais. Daí nasceram ciências como a Física, a Química, a Biologia etc.

Mas qual a importância de se estudar uma ciência como a Física? Do que ela trata? Podemos dizer que a Física é uma ciência natural que estuda as interações entre matéria e energia. Ela estuda os fenômenos mais fundamentais da natureza, desde os mais elementares até os mais complexos. Através das leis da Física podemos compreender o simples fato de caminharmos e até mesmo o movimento das galáxias. A Física busca compreender a natureza que nos cerca, e não é só uma questão de curiosidade, mas sim uma questão de sobrevivência. Compreender os fenômenos naturais, conhecer os ciclos desses fenômenos e quem sabe poder prevê-los é vital! É essa a busca, tanto da Física quanto de outras ciências. E à medida que se conseguiu tal compreensão, esse conhecimento associado à diversas técnicas deu origem a toda a tecnologia que temos hoje e que tanto melhorou nossa vida.

Muitas pessoas não vivem sem a tecnologia, porém não tem nenhum interesse em conhecer a ciência que está por trás dela. A Física está presente em tudo na vida do ser humano e é no mínimo estranho fechar os olhos a esse conhecimento. Temos a necessidade de ter um mínimo de conhecimento geral, e a Física faz parte de tudo isso. No nosso dia a dia, quantas vezes podemos evitar situações até mesmo de perigo se tivermos um pouco de conhecimento de Física. Saber que não se pode mudar a chave seletora do chuveiro com as mãos molhadas, que não se fica em área descampada em dia de tempestades, que não se deve ultrapassar a velocidade máxima permitida em uma rodovia, enfim, tudo isso envolve o conhecimento de Física, e tudo pode fazer a diferença na nossa vida!

 

 

MECÂNICA

Professor Diminoi

 

CONVERSÃO ÁREA

https://www.google.com.br/search?q=um+metro+quadrados+correspoe+a+quantos+centimitros+quadrados%3F&gws_rd=cr&ei=HNrwWOOvJpKvwgThppb4BA

CONVERSÃO VOLUME

https://www.google.com.br/search?q=m+cubicos+em+cm+cubicos&gws_rd=cr&ei=pYXxWN32HIalwgSGmKDQBQ

 

reprodução


Em Notação Científica

reprodução

Área e Volume

1m2 = 10000cm2

1m3  = 1000L

 

 

Mecânica  - É o ramo da Física responsável pelo estudo dos movimentos dos corpos, bem como suas evoluções temporais e as equações matemáticas que os determinam. É um estudo de extrema importância, com inúmeras aplicações cotidianas, como na Geologia, com o estudo dos movimentos das placas tectônicas; na Medicina, com o estudo do mapeamento do fluxo de sangue; na Astronomia, com as análises dos movimentos dos planetas etc.

As bases para o que chamamos de Mecânica Clássica foram lançadas por Galileu Galilei, Johannes Kepler e Isaac Newton. Já no século XX Albert Einstein desenvolveu os estudos da chamada Mecânica Relativística, teoria que engloba a Mecânica Clássica e analisa movimentos em velocidades próximas ou iguais à da luz.

 

Mecânica Clássica - A mecânica clássica se refere às três principais formulações da mecânica pré-relativística: a mecânica newtoniana, mecânica lagrangeana e a mecânica hamiltoniana.  É a parte da física que analisa o movimento, as variações de energia e as forças que atuam sobre um corpo. No ensino de física, a mecânica clássica geralmente é a primeira área da física a ser lecionada. É geralmente classificada em estática, cinemática e dinâmica.

 

Mecânica Relativística - Mostra que o espaço e o tempo em velocidades próximas ou iguais à da luz não são conceitos absolutos, mas, sim, relativos. Segundo essa teoria, observadores diferentes, um parado e outro em alta velocidade, apresentam percepções diferentes das medidas de espaço e tempo.

A Teoria da Relatividade é obra do físico alemão Albert Einstein e foi publicada em 1905, o chamado ano milagroso da Física, pois foi o ano da publicação de preciosos artigos científicos de Einstein.

 

Mecânica Quântica - É o estudo do mundo subatômico, moléculas, átomos, elétrons etc.

 Einstein e a Mecânica Quântica (Luiz Davidovich)

 

É um caso-limite da Mecânica Quântica, mas a linguagem estabelecida pela Mecânica Quântica possui dependência da Mecânica Clássica. Em Quântica, o conceito básico de trajetória (caminho feito por um móvel) não existe, e as medidas são feitas com base nas interações de elétrons com objetos denominados de aparelhos.

Os conceitos estudados em Mecânica Quântica mexem profundamente com nosso senso comum e propõem fenômenos que podem nos parecer estranhos. Como exemplo, podemos citar o caso da posição e da velocidade de um elétron. Na Mecânica Clássica, as posições e as velocidades de um móvel são extremamente bem definidas, mas, em Quântica, se as coordenadas de um elétron são conhecidas, a determinação de sua velocidade é impossível. Caso a velocidade seja conhecida, torna-se impossível a determinação da posição do elétron.

 

  

CINEMÁTICA 

Professor Diminoi

Cinemática - É a parte da Mecânica que estuda os movimentos sem que haja preocupação com suas causas e efeitos. Alguns conceitos de Cinemática são muito importantes para a correta compreensão de fenômenos físicos e pleno entendimento da forma de se construir o raciocínio necessário para a resolução de problemas.

 

Observação: cinemática  estuda o movimento dos corpos sem se preocupar com a causa  deste movimento.

 

O movimento esta presente em toda a natureza: nos movimentos de translação e de rotação dos astros, nas massa de ar, nas marés, na migração de aves, entre inúmeros outros exemplos. A maioria das atividades humanas também está relacionada as movimento. Movimentos como o do leão fugindo dos búfalos bem como os movimentos dos búfalos afugentando o leão representado na figura abaixo.

 

Neste link  estudarmos CINEMÁTICA que é a parte da física que descreve os movimentos sem se preocupar com suas causas e consequências.

      

 

Trajetória/Trajeto – É o caminho descrito pelo móvel (nem sempre o trajeto para se ir de um ponto A  um ponto B e igual a distância em linha reta entre A a B). 

   

 

Observação: A Trajetória é uma linha imaginária que representa as sucessivas posições de o corpo ocupa ao longo do tempo.

 

No Sistema Internacional a velocidade e em metros por segundo (m/s) e o tempo em segundo (s).

 

Observação: para transformar m/s em km/h basta multiplicar o valor por 3,6 e para transformar k/h em m/s basta dividir o valor por 3,6.

 

Ponto material - É um corpo cujas dimensões pode  ser desprezada na resolução do problema (quando estudamos a velocidade da luz do Sol até chegar a Terra.

 

Posição de um corpo - É onde o corpo se encontra no momento em questão.

 

Referencial É qualquer corpo que adotamos para comparar com outro. Na figura abaixo tomamos como referencial o homem sentado no morrinho ao lado da rodovia.

 

Corpo em movimento ou repouso - Para saber se um corpo esta em movimento ou em repouso é necessário adotarmos um referencial (observe o item anterior). Se a posição entre o ônibus e o homem estiver variando no decorrer do tempo, o ônibus esta em movimento em relação ao homem, assim, como o homem está em movimento em relação ao ônibus e aos passageiro. 

 

 

Também podemos dizer: o ônibus está em movimento em relação ao homem e em repouso em relação aos passageiros.

 

Observe a ilustração: na ilustração temos o 1 carro, 1 home, 1 passarinho e 2 árvores. Pergunta-se, quem esta em movimento? Quem está em repouso? Justifique sua resposta.

 

Espaço percorridoÉ a distância percorrida pelo móvel ou seja, a posição final (S) menos a posição inicia (So).

 

 

MOVIMENTO UNIFORME

Movimento Uniforme (MU) O Movimento Uniforme é qualquer movimento realizado por um corpo que percorre distâncias iguais em tempos iguais. No MU, o corpo não necessita estar se movimentando em linha reta, em círculos ou em qualquer outra forma, basta que a sua velocidade escalar se mantenha a mesma por todo o tempo.

 

Um corpo está em movimento uniforme quando sua velocidade é constante, isso é não vaia no decorrer do tempo.  Isto é, Percorre distâncias iguais em intervalos de temos iguais.

 

 

MOVIMENTO RETILÍNEO UNIFORME

Movimento Retilíneo Uniforme (MRU) - É a mesma coisa que o MU, exceto pelo fato de que, obrigatóriamente, o trajeto percorrido pelo corpo deve ser uma linha reta.

 

Gráficos do Movimento Uniforme (MU)

 

VELOCIDADE MÉDIA

 

Velocidade Média -  A velocidade média de um móvel pode ser interpretada como o valor da velocidade constante que um segundo móvel deveria manter para fazer o mesmo percurso no mesmo tempo que o móvel em estudo.

Sabemos que o conceito de deslocamento é a medida da distância entre duas posições ocupadas pelo corpo em movimento, sobre uma trajetória. Essa medida costuma ser obtida entre duas referências como, por exemplo, entre marcos quilométricos de uma estrada.

 

Velocidade Escalar Média - Já o conceito de velocidade escalar nos dá a ideia numérica da rapidez com que o corpo se movimenta e em que orientação ele o faz. Essa velocidade pode estar relacionada a um intervalo de tempo, quando é denominada velocidade escalar média. A velocidade escalar instantânea representa a velocidade de um móvel num determinado instante de seu movimento.

 

 

Exemplo: para saber qual a velocidade média desenvolvida pelo carro entre as posição A e B use: Vm=ΔS/t Portanto ΔS = B - A     →  ΔS = 100 - 0    ΔS = 100. Bastas dividir 100m pelo tempo que é 5s e você terá a velocidade média que é: Vm = 20m/s.

 

 

Gráfico da Velocidade em Função do Tempo (velocidade mádia).

 

 

Movimento Progressivo ou Movimento a Favor da Trajetória - Um móvel está em movimento progressivo quando seu deslocamento tem sentido a favor da trajetória, isto é, se afasta da origem das posição. Nesse caso a velocidade é positiva.

 

Movimento Retrógrado ou Movimento Contrário a Trajetória - Um móvel está em movimento retrógrado quando seu deslocamento tem sentido contrário a trajetória, isto é, se aproxima da origem das posição. Nesse caso a velocidade é negativa.

 

Gráfico do Movimento Progressivo e Movimento Retrógrado

 

Gráficos do Movimento Uniforme (MU)

 

Gráficos do Movimento Uniformemente Variado

Diferentemente do Movimento Uniforme, o Movimento Uniformemente Variado possui velocidade escalar média variável, e aceleração constante (a = cte) e diferente de zero (a ≠ 0).

Função horária dos espaços s = f(t).

A função horária dos espaços no MUV é uma função do 2º grau dada por:

Onde:
S
= espaço final (m)
S0 = espaço inicial (m)
V0 = velocidade inicial (m/s)
t = tempo (s)
a = aceleração (m/s2)

Por ser do 2º grau, a representação gráfica da função é uma parábola.

Gráfico da função s = f(t)

1) Para a > 0

Esse gráfico é uma parábola com a concavidade voltada para cima, pois a aceleração é maior do que zero (a > 0). Assim, se a velocidade for menor do que zero (v < 0), o movimento é retardado. Se a velocidade for maior do que zero (v > 0), o movimento é acelerado.

2) Para a < 0


Nesse caso a parábola tem concavidade voltada para baixo, pois a aceleração é menor do que zero (a < 0). Se a velocidade for menor do que zero (v < 0), o movimento é acelerado. Se a velocidade for maior do zero (v > 0), o movimento é retardado.

No movimento retardado, o módulo da velocidade diminui com o passar do tempo. Já no movimento acelerado, o módulo da velocidade aumenta com o passar do tempo.

Note que quando a velocidade e a aceleração têm o mesmo sinal (v>0 e a>0 ou v<0 e a< 0) o movimento é Uniformemente Variado e Acelerado. Quando a velocidade e a aceleração têm sinais contrários (v > 0 e a < 0 ou v < 0 e a > 0) o movimento é Uniformemente Variado e Retardado.

Função horária da velocidade v = f(t).

A função horária da velocidade é uma função do 1º grau, representada por:

v = v0 + a.t

Por ser uma função de primeiro grau, a representação gráfica dessa função é uma reta.

Gráficos da velocidade v = f(t).

1) Para a > 0


Nesse caso a > 0, o gráfico da função é uma reta crescente. A velocidade aumenta com o passar do tempo.

2) Para v < 0.


Aqui a < 0, assim, o gráfico é uma reta decrescente. A velocidade diminui com o passar do tempo.

Gráficos da Aceleração
No Movimento Uniformemente Variado, a aceleração é constante e diferente de zero, logo, a função da velocidade é uma função constate, e o gráfico que representa essa função é uma reta paralela ao eixo dos tempos.

 

 

 

QUESTÕES DE CINEMÁTICA - RESOLVIDAS

01) (UELONDRINA-PR) Em 1984, o navegador Amyr Klink atravessou o Oceano Atlântico em um barco a remo, percorrendo a distância de, aproximadamente, 7000 km em 100 dias.

 

Nessa tarefa, sua velocidade média foi, em km/h, igual a:

A) 1,4

B) 2,9

C) 6,0

D) 7,0

E) 70

 

Resolução:

Temos que 1 dia = 24 h, logo 100 dias = 2400h

Como Vm = ΔS/Δt, podemos dizer que Vm = 7000 km/ 2400h, então: Vm = 2,9 km/h

Alternativa: B

 

02) (MACKENZIE-SP) Um motorista deseja fazer uma viagem de 230 km em 2,5 horas. Se na primeira hora ele viajar com velocidade média de 80 km/h, a velocidade média no restante do percurso deve ser de:

A) 120 km/h

B) 110 km/h

C) 100 km/h

D) 90 km/h

E) 85 km/h

 

Resolução:

Vm = ΔS/Δt, logo para a primeira hora temos: ΔS = Vm . Δt

ΔS = 80 . 1, então: ΔS = 80 Km. Ainda falta percorrer 150 km em 1,5 h. Logo sua velocidade média deverá ser:

Vm = 150/1,5, que nos dá um resultado de: Vm = 100km/h

Alternativa: C

 

03) Uma composição ferroviária com 1 locomotiva e 14 vagões desloca-se à velocidade constante de 10 m/s. Tanto a locomotiva quanto cada vagão medem 12 m. Então, quanto tempo ela demorará para atravessar um viaduto com 200 m de comprimento?

Resolução:

O comprimento total do trem é 15 . 12 = 180 m.

Devemos levar em consideração além do comprimento do trem, a extensão da ponte do viaduto.

 

Nesse caso, esses dois valores devem ser somados:

ΔS = 180 + 200, logo ΔS = 380 m.

O tempo necessário para que o trem atravesse a ponte será:

Δt = ΔS/Vm.

Então: Δt = 380/10 = 38.

O tempo necessário para o trem atravessar o viaduto será igual a 38 segundos.

 

04) Qual será a distância total percorrida por um automóvel que parte de um hotel, no km 78 de uma rodovia, leva os hóspedes até uma fazenda de gado, no km 127 dela, e depois retorna ao local de saída?

 

Resolução:

A distância total percorrida na ida é dada pela subtração da posição final pela posição inicial, logo: 127 - 78 = 49 km

Contando a ida e volta, temos: 49 x 2 = 98 km

 

05) (UNIFICADO-RJ) A nave espacial New Horizons foi lançada pela agência espacial NASA para estudar o planeta anão Plutão em janeiro de 2006. Em julho de 2015, a nave chegou muito próximo a Plutão e conseguiu enviar imagens de sua superfície. A distância estimada entre a Terra e a nave, quando ela estava bem próxima a Plutão, era de 32 unidades astronômicas (1 unidade astronômica = 150 milhões de quilômetros).

 

Se a velocidade da luz é de 300 mil quilômetros por segundo, a imagem recebida pelos observatórios terrestres levou, da New Horizons até a Terra, aproximadamente

A) 0,1 microssegundo

B) 1 hora

C) 4 horas e meia

D) 2 dias

E) zero segundos

 

Resolução:

Determinando a distância em quilômetros entre a Terra e Plutão, teremos:

32 UA x 150 .106 km = 4,8.109 km

Sabendo que a velocidade da luz é de 3.105 km/s, podemos utilizar a equação da velocidade média e determinar o tempo gasto pela luz.

V = Δs ÷ Δt

3.105 = 4,8.109 ÷ Δt

Δt = 4,8.109 ÷ 3.105

Δt = 1,6 . 104 s = 16000 s

Uma hora possui 3600 s, logo, 16000 s divididos por 3600 s resultam em 4,4 h, aproximadamente 4,5 h.

Alternativa: C

 

06) (UEFS) Pela experiência cotidiana, sabe-se que o movimento representa uma mudança contínua na posição de um corpo em relação a um dado referencial. A posição de uma partícula movendo-se ao longo do eixo z varia no tempo, de acordo com a expressão z(t) = 5t3 – 3t, em que z está em metros e t, em segundos.

Com base nessas informações, analise as afirmativas e marque com V as verdadeiras e com F as falsas.

(  ) O movimento da partícula é retilíneo e uniformemente acelerado.

(  ) A partícula apresenta um movimento progressivo em toda sua trajetória.

(  ) A velocidade média da partícula entre os instantes t = 1,0 s e t = 2,0 s é igual a 32,0m/s.

(  ) Em t = 0s e em, aproximadamente, t = 0,77s, a partícula passa pela origem da sua trajetória.

 

A alternativa que contém a sequência correta, de cima para baixo, é a

A) F V V F

B) F V F V

C) F F V V

D) V V F F

E) V F F V

 

Resolução:

Antes de analisar as afirmações, devemos notar que:

Ao dividir todos os termos da equação pelo tempo, temos:

v = 5t2 – 3

Isso revela que a velocidade pode ter valores positivos ou negativos para diferentes instantes de tempo, o que indica a possibilidade de inversão de sentido da velocidade.

Ao dividirmos os termos da equação da velocidade pelo tempo, temos:

a = 5.t – (3/t)

Isso mostra que a aceleração está em função do tempo. Portanto, as afirmações são:

 

Falsa. O movimento possui aceleração variável;

Falsa. A velocidade muda de sentindo, sendo assim, o movimento não será progressivo em toda a sua trajetória;

Verdadeira. Aplicando-se os valores 1 s e 2 s na função da posição em função do tempo, os resultados serão, respectivamente, 2 m e 34 m. Assim, a velocidade média será:

V = Δs ÷ Δt

V = (34 – 2) ÷ (2 – 1)

V = 32 m/s

Verdadeira. Aplicando-se t = 0 s, o resultado final será nulo. Já para t = 0,77 s, a posição indicada será de, aproximadamente, 0,03 m.

Alternativa: C

 

07) Analise as afirmações a respeito das características do movimento uniforme.

I) O movimento dito progressivo é aquele que ocorre a favor do sentido positivo da trajetória.

II) O gráfico da função horária da posição para o movimento retilíneo uniforme sempre é uma reta crescente.

III) Se o movimento for retrógrado, o gráfico da posição em função do tempo será uma reta crescente.

IV) O coeficiente angular da reta do gráfico da posição versus o tempo é igual à velocidade do móvel.

 

É verdadeiro o que se diz em:

A) I e II

B) I, III e IV

C) I, II e IV

D) II e IV

E) II e III

 

Resolução:

I) Verdadeira: O movimento dito progressivo realmente é aquele que ocorre a favor do sentido positivo da trajetória.

II) Falsa: Se o movimento for retrógrado, a velocidade será negativa e, assim, a reta do gráfico da função horária da posição para o movimento uniforme será decrescente.

III) Falsa. O movimento retrógrado apresenta velocidade negativa, logo, o gráfico é decrescente.

IV) Verdadeira. Em um gráfico de espaço versus tempo, a tangente do ângulo formado pela reta é dada pela razão Δs ÷ Δt, razão essa que determina a velocidade do móvel.

Alternativa: C

 

08) Um móvel em uma rodovia sai da posição 18 km e anda de acordo com o sentido positivo da trajetória com velocidade constante de 30 km/h. Outro móvel sai da posição 2 km e anda no sentido positivo da trajetória com velocidade constante de 50 km/h.

Determine o ponto onde os dois móveis se encontrarão.

A) 30 km

B) 38 km

C) 40 km

D) 42 km

E) 50 km

 

Resolução:

Escrevendo a função horária da posição para cada um dos móveis, temos:

S1 = 18 + 30.t

S2 = 2 + 50.t

No momento do encontro, as posições dos móveis serão as mesmas, sendo assim, igualando as funções acima, teremos:

S1 = S2

18 + 30.t = 2 + 50.t

20.t = 16

t = 0,8 s

O tempo para o encontro é de 0,8 s. Assim, a posição de encontro para os móveis é:


S1 = 18 + 30.t = 18 + 30.0,8 = 18 + 24 = 42 km

S2 = 2 + 50.t = 2 + 50.0,8 = 2+ 40 = 42 km

Alternativa: D

 

09) Imagine que um paraquedista saltará de uma aeronave que se movimenta em uma trajetória retilínea, horizontal e para a direita.

 

Ao saltar e deixar o movimento acontecer naturalmente, qual será a trajetória do paraquedista até chegar ao chão?

A) A trajetória do paraquedista será retilínea, vertical e para baixo.

B) A trajetória do paraquedista será uma reta, na diagonal, para baixo e para a esquerda.

C) A trajetória do paraquedista será uma reta, na diagonal, para baixo e para a direita.

D) A trajetória do paraquedista será uma curva para baixo e para a esquerda.

E) A trajetória do paraquedista será uma curva para baixo e para a direita.

 

Resolução:

O movimento do paraquedista, por inércia, acompanha o da aeronave, portanto, seu movimento será para a direita. A queda do paraquedista é composta por duas velocidades: uma na vertical e para baixo e outra na horizontal para a direita. Sendo assim, o movimento resultante é uma curva para a direita.

Alternativa: E

 

10) A respeito da ideia de referencial, marque a alternativa correta:

A) O Sol, por ter uma massa correspondente a 98% de toda a massa do sistema solar, deve ser sempre considerado o referencial para quaisquer fenômenos.

B) Os fenômenos devem sempre ser analisados a partir de um referencial parado.

C) Referencial é o corpo em movimento retilíneo uniforme a partir do qual se analisam os movimentos.

D) Referencial é o corpo a partir do qual os fenômenos são analisados.

E) O movimento e o repouso são absolutos e não dependem de um referencial.

 

Resolução:

A definição de referencial mostra que ele é o corpo a partir do qual as análises são feitas. É o lugar do observador, aquele que descreve o fenômeno da forma como vê.

Alternativa: D

 

11) Um professor de Física, durante uma de suas aulas, perguntou aos alunos: “Por que podemos dizer que estamos todos em movimento mesmo que sentados em nossas carteiras?” Ao dar a resposta correta, um dos alunos disse:

A) Porque o Sol sempre é o referencial adotado, uma vez que é o corpo mais massivo do sistema solar; então, estamos executando o movimento de translação com a Terra.

B) Porque se adotarmos um referencial no espaço, como a Lua, a Terra estará em movimento e nós nos movimentamos com o planeta.

C) Porque a Terra executa um movimento de translação ao redor de seu próprio eixo.D) Porque nada pode permanecer totalmente parado.

E) n.d.a.

 

Resolução:

O movimento e o repouso são conceitos relativos, pois dependem de um referencial adotado. Assim, se um corpo fora da Terra é adotado como referencial, a Terra executa, no mínimo, dois movimentos (rotação e translação), e nós nos movimentamos com ela.

Alternativa: B

 

12) A respeito dos conceitos de movimento, repouso, trajetória e referencial, marque a alternativa correta.

A) A trajetória é o caminho feito por um corpo independentemente do referencial adotado.

B) Movimento e repouso são conceitos relativos, pois dependem da trajetória adotada pelo móvel.

C) O referencial é o corpo a partir do qual as observações dos fenômenos são feitas. O Sol é considerado um referencial privilegiado porque é o corpo mais massivo do sistema solar.

D) A trajetória é o caminho executado por um móvel em relação a um referencial adotado.

E) Mesmo que a Terra seja tomada como referencial, nunca poderemos dizer que os prédios e as demais construções estão em repouso.

Alternativa: D

 

13) (MACK-SP) Em um mesmo plano vertical, perpendicular à rua, temos os segmentos de reta AB e PQ, paralelos entre si. Um ônibus se desloca com velocidade constante de módulo v1, em relação à rua, ao longo de AB, no sentido de A para B, enquanto um passageiro se desloca no interior do ônibus, com velocidade constante de módulo v2, em relação ao veículo, ao longo de PQ no sentido de P para Q.

 

Sendo v1 > v2, o módulo da velocidade do passageiro em relação ao ponto B da rua é:

A) v1 + v2

B) v1 - v2

C) v2 + v1

D) v1

E) v2

 

Resolução:

Em relação ao ponto adotado como referencial, existem duas velocidades: v1, que é a velocidade do ônibus para a direita, e v2, que é a velocidade do passageiro para a esquerda. Como a velocidade do ônibus é maior, podemos dizer que a velocidade resultante (vR) do passageiro é:

vR = v1 – v2

Alternativa: B

 

14) Um móvel com velocidade constante percorre uma trajetória retilínea à qual se fixou um eixo de coordenadas. Sabe-se que no instante t0 = 0, a posição do móvel é x0 = 500m e, no instante t = 20s, a posição é x = 200m.

Determine:

a. A velocidade do móvel.
b. A função da posição.
c. A posição nos instantes t = 1s e t = 15s.
d. O instante em que ele passa pela origem.

 

Resolução:

(a) A velocidade do móvel

v = Δs/Δt
v = (200-500)/(20-0)
v = -300/20
v = -15m/s  (velocidade negativa implica em movimento retrógrado)

(b)  função da posição

x = x0 + v.t
x = 500 - 15t

A posição nos instantes t = 1s e t = 15s

(c1) Para t = 1s temos:

x = 500 - 15.1
x = 500 – 15
x = 485m

(c2) Para t = 15s temos:

x = 500 – 15.15
x = 500 – 225
x = 275m

(d) O instante em que ele passa pela origem para x = 0 temos que:

0 = 500 – 15.t
15.t = 500
t = 500/15
t = 33,3 s em valor aproximado.

 

15) Dois carros A e B encontram-se sobre uma mesma pista retilínea com velocidades constantes no qual a função horária das posições de ambos para um mesmo instante são dadas a seguir: xA = 200 + 20.t e xB = 100 + 40.t.

Com base nessas informações, responda as questões abaixo.

(a) É possível que o móvel B ultrapasse o móvel A? Justifique.
(b) Determine o instante em que o móvel B alcançará o móvel A, caso este alcance aconteça.

 

Resolução:

(a) Sim, pois a posição do móvel B é anterior a de A, e B possui uma velocidade constante maior que a de A; estando eles em uma mesma trajetória retilínea dentro de um intervalo de tempo Δt, B irá passar A.

(b) x= xB

200 + 20.t = 100 + 40.t
t - 20.t = 200 - 100
20.t = 100
t = 100/20
t = 5s

 

16) A função horária do espaço de um carro em movimento retilíneo uniforme é dada pela seguinte expressão: x = 100 + 8.t. Determine em que instante esse móvel passará pela posição 260m.

 

Resolução:

x = 100 + 8.t
260 = 100 + 8.t
8.t = 160
t = 160/8
t = 20s

 

17) O gráfico a seguir representa a função horária do espaço de um móvel em trajetória retilínea e em movimento uniforme.

Com base nele, determine a velocidade e a função horária do espaço deste móvel.

 

Resolução:

v = Δs/Δt
v = (250 – 50)/(10 - 0)
v = 200/10
v = 20m/s – velocidade

x = xo+ v.t
x = 50 + 20.t

 

18) Um móvel em M.R.U gasta 10h para percorrer 1100 km com velocidade constante. Qual a distância percorrida após 3 horas da partida?

 

Resolução:

V = S/t
V = 1100/10
V = 110km/h

110 = S/3
S = 330 km.

 

19) Determine o tempo necessário para que os móveis da figura a seguir se encontrem.

A) 2h

B) 3h

C) 4h

D) 5h

E) 6h

 

Resolução:

Escrevendo a função horária da posição do movimento uniforme para os corpos A e B, temos:

SA = S0 + v.t → SA = 0 + 30.t → SA = 30.t

SB = S0 – v.t → SB = 400 – 50.t

Sabendo que no momento do encontro SA = SB, temos:

SA = SB

30.t = 400 – 50.t

50.t + 30.t = 400

80.t = 400

t = 400
    80

t = 5 h

Alternativa: D


20) A partir do gráfico abaixo, escreva a função horária da posição para o móvel que executa movimento uniforme.

A) S = 50 + 5.t

B) S = 50 + 15.t

C) S = 50 – 5.t

D) S = 50 + 10.t

E) S =

 

Resolução:

Analisando o gráfico, temos:

Posição inicial: S0 = 50 m;

Tempo até atingir a posição 0: t = 10 s;

Tipo de movimento: Reta decrescente indica movimento retrógrado, logo, a velocidade é negativa.

A partir da definição de velocidade média, podemos determinar a velocidade do móvel:

v = Δs
     Δt

v = (0 – 50)
     10

v = - 5m/s

De posse da velocidade, podemos determinar a função horária da posição para esse móvel.

S = S0 + v.t

S = 50 – 5.t

Alternativa: C

 

21) Um móvel com velocidade constante igual a 20 m/s parte da posição 5 m de uma reta numerada e anda de acordo com o sentido positivo da reta. Determine a posição do móvel após 15 s de movimento.

A) 105 m

D) 205 m

C) 305 m

D) 405 m

E) 505 m

 

Resolução:

A partir dos dados fornecidos, temos:

v = 20 m/s

S0 = 5m

t = 15s

A partir da função horária da posição para o movimento uniforme, temos:

S = S0 + v.t

S = 5 + 20.15

S = 5 + 300

S = 305 m

Alternativa: C

 

22) Um homem sai da posição 15 m de uma pista de caminhada e anda até a posição 875 m mantendo uma velocidade constante de 2 m/s.

Sabendo disso, determine o tempo gasto para completar a caminhada.

A) 430 s

B) 320 s

C) 450 s

D) 630 s

E) 530 s

 

Resolução:

Do enunciado da questão, temos:

S0 = 15 m

S = 875 m

v = 2 m/s

A partir da função horária da posição para o movimento uniforme, podemos escrever que:

S = S0 + v.t

875 = 15 + 2.t

875 – 15 = 2.t

2.t = 860

t = 430 s

Alternativa: A

23) (AFA) Considere dois veículos deslocando-se em sentidos opostos em uma mesma rodovia. Um veículo tem velocidade escalar de 72 km/h e o outro de 108 km/h, em módulo. Um passageiro, viajando no veículo mais lento, resolve cronometrar o tempo decorrido até que os veículos se cruzem e encontra o intervalo de 30 segundos.

A distância, em km, de separação dos veículos, no início da cronometragem, era de:

A) 0,5 km

B) 1,5 km

C) 2 km

D) 2,5 km

 

Resolução:

Adotando que o veículo mais lento executa seu movimento de acordo com o sentido positivo da trajetória e sendo x a distância que separa os dois veículos no início da cronometragem, temos:

Veículo mais lento:

Velocidade: v = 72 km/h ÷ 3,6 = 20 m/s (Multiplicamos por 3,6 passar km/h para m/s)

Função horária da posição: S = S0 + v.t → S = 0 + 20.t → S = 20.t

Veículo mais rápido:

Velocidade: v = 108 Km/h ÷ 3,6 = 30 m/s

Função horária da posição: S' = S'0 + v.t → S' = x – 30.t

No momento do encontro dos móveis, as posições S e S' são iguais:

S = S'

20.t = x – 30.t

20.t + 30.t = x

x = 50.t

Sabendo que o encontro dos móveis ocorre em 30 s, temos:

x = 50.30

x = 1500 m = 1,5 km

Alternativa: B

 

Continuação...

 

 

MOVIMENTO UNIFORMEMENTE VARIADO  (MUV)

Movimento Uniformemente Variado –  É um movimento que possui uma aceleração constante, sua velocidade varia uniformemente de acordo com o tempo e o espaço percorrido aumenta proporcionalmente ao quadrado do tempo.

 

Característica de  movimento  uniformemente variado (MUV)

- a velocidade varia com o passar do tempo.

- a aceleração é constante.

 

Aceleração – É a grandeza que faz varia a velocidade de um móvel. Ela é uma grandeza vetorial que possui

- módulo

- direção

- sentido.

 

 

Aceleração Média – É a variação da velocidade dividida pela variação do tempo.

am = aceleração média (m/s2)

V = velocidade final (m/s)

V0 = velocidade inicial (m/s)

Δt = variação do tempo (s)

ΔV= V0 – V (variação da velocidade)

Δt = t – t0 (variação do tempo)

Observação: Quando a sua velocidade é crescente dizemos que o movimento é uniformemente acelerado, e se diminui sua velocidade dizemos que ele está em movimento uniformemente retardado.

 

 

MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO  (MRUV)

É um movimento em linha reta, que possui uma aceleração constante, sua velocidade varia uniformemente de acordo com o tempo e o espaço percorrido aumenta proporcionalmente ao quadrado do tempo.

 

Característica de  movimento retilíneo uniformemente variado (MRUV)

- a trajetória é uma reta

- a velocidade varia com o passar do tempo.

- a aceleração é constante.

 

Equação Horária da Velocidade (MUV)

V = V0 + at

V = velocidade final (m/s)

V0 = velocidade inicial (m/s)

a = aceleração (m/s2)

t = tempo (s)

 

Equação horária das posições ou Função horária das posições

 

S = posição final (m)

S0 = posição inicial (m)

V0 = velocidade inicial (m/s)

a = aceleração (m/s2)

 

Equação de Torricelli - Ela descreve a velocidade de um corpo em função da sua trajetória. Perceba que precisamos saber a orientação da trajetória para saber se a velocidade será positiva ou negativa.

Observação: geralmente usamos essa equação quando o tempo não é dado

v2 = v02 + 2aΔS

v2 = velocidade final (m)

v0 = velocidade inicial (m/s)

a = aceleração (m/s2)

ΔS = distância percorrida (m)

 

Gráfico do Movimento Uniformemente Variado

 

 

QUESTÕES RESOLVIDAS - (M.U.V.)

01) (PUC) Testes realizados com o carro Gol mostraram que ele vai de 0 a 100 km/h em 10s. Calcule a aceleração aproximada do veículo nesse intervalo de tempo. (adote 100 km/h = 28 m/s)

A) 2,0 m/s²

B) 2,8 m/s²

C) 4,1 m/s²

D) 5,3 m/s²

E) 8,1 m/s²

Resolução

v0 = 0

v = 100 km/h = 28 m/s

t = 10 s

 v = v0 + a.t

28 = 0 + a . 10

10a = 28

a = 28/10

a = 2,8 m/s²

Alternativa: B

 

02) (Vuesp) Um automóvel que vinha a 25 m/s freou e parou em 25 s. O valor  da aceleração escalar média do automóvel durante a freada foi de:

A) zero

B) -1,0 m/s²

C) 1,0 m/s²

D) -3,6 m/s²

E) 4,0 m/s²

Resolução

v0 = 25 m/s

v = 0

t = 25 s

 v = v0 + a.t

0 = 25 + a . 25

25 + a . 25 = 0

25a = -25

a = -25/25

a = -1 m/s²

Alternativa: B

 

03) (Fuvest) Um avião a jato, partindo do repouso. é submetido a uma aceleração constante de 4 m/s². Qual o intervalo de tempo de aplicação desta aceleração para que o jato atinja a velocidade de decolagem de 160 m/s ?

A) 80s

B) 20s

C) 20s

D) 40s

E) 40s

Resolução

v0 = 0

v = 160 m/s

a = 4 m/s²

v = v0 + a.t

160 = 0 + 4.t

t = 160/4

t = 40 s

Alternativa: D

 

EXERCÍCIOS RESOLVIDOS – (MUV)

04)  (FUVEST) Um veículo parte do repouso em movimento retilíneo e acelera com aceleração escalar constante e igual a 2,0 m/s2.

Pode-se dizer que sua velocidade escalar e a distância percorrida após 3,0 segundos, valem, respectivamente:

A) 6,0 m/s e 9,0m;

B) 6,0m/s e 18m;

C) 3,0 m/s e 12m;

D) 12 m/s e 35m;

E) 2,0 m/s e 12 m.

 

Resolução:

a = 2,0 m/s2
t = 3 s
v0 = 0 (pois o veículo parte do repouso)

Utilizamos a equação v = v0 + at:

v = 0 + 2 . 3
v = 6 m/s

Também utilizamos a função horária do espaço para o movimento uniformemente variado:

S = S0 + v0t + 1 at2
                           
2

Como S0 e v0 são iguais a zero, reescrevemos a fórmula da seguinte forma:

S = at2
       2

S = at2
       2

S = . 2 .32
       2

S = 9 m

Alternativa: A

 

05) (UFPA) Um ponto material parte do repouso em movimento uniformemente variado e, após percorrer 12 m, está animado de uma velocidade escalar de 6,0 m/s.

A aceleração escalar do ponto material, em m/s, vale:

A) 1,5

B) 1,0

C) 2,5

D) 2,0

E) n.d.a.

 

Resolução:

Dados:

Δs = 12 m
v = 6 m/s
v0 = 0

Para calcular a aceleração com esses dados, devemos utilizar a equação de Torricelli:

v2 = v0+ 2.a.Δs

62 = 02 + 2.a.12

36 = 24ª

a = 36
      24

a = 1,5 m/s2

Alternativa: A

 

06) Uma pedra é lançada do décimo andar de um prédio com velocidade inicial de 5m/s. Sendo a altura nesse ponto igual a 30 m e a aceleração da gravidade igual a 10 m/s2, a velocidade da pedra ao atingir o chão é:

A) 5 m/s

B) 25 m/s

C) 50 m/s

D) 30 m/s

E) 10 m/s

 

Resolução:

Dados:

v0 = 5 m/s
h = 30 m
g = 10 m/s2

Utilizamos a equação de Torricelli para calcular a velocidade da pedra no final da queda livre:

v2 = v0+ 2.a.h
v2 = 5+ 2.10.30
v2 = 25 + 600
v2 = 625
v = √625
v = 25 m/s

Alternativa: B

 

07) Um móvel parte do repouso e percorre uma distância de 200 m em 20s. A aceleração desse móvel, em m/s2, é:

A) 0,5

B) 0,75

C) 1

D) 1,5

E) 2

 

Resolução:

S = 200 m
t = 20 s
v0 = 0

Utilizamos a função horária da posição:

S = S0 + v0t + 1 at2
                       2

200 = 0 + 0.20 + 1.a.202
                           2

200 = 1a . 400
          2

200 = 200 a

a = 200
      200

a = 1 m/s2

Alternativa: C

 

01) (UEL-PR) Um trem de 200 m de comprimento, com velocidade escalar constante de 60 km/h, gasta 36 s para atravessar completamente uma ponte.

 

A extensão da ponte, em metros, é de:

A) 200

B) 400

C) 500

D) 600

E) 800

 

Resolução:

Dados:

L = 200 m

V = 60 km/h = 16,7 m/s

T = 36 s

S = v.t

S = x + 200

x + 200 = 16,7 . 36

x = 600 – 200

x = 400 m

Alternativa: B

 

02) (FEI-SP) No movimento retilíneo uniformemente variado, com velocidade inicial nula, a distância percorrida é:

A) diretamente proporcional ao tempo de percurso

B) inversamente proporcional ao tempo de percurso

C) diretamente proporcional ao quadrado do tempo de percurso

D) inversamente proporcional ao quadrado do tempo de percurso

E) diretamente proporcional à velocidade

 

Resolução:

A equação que relaciona a velocidade inicial, a distância percorrida e o tempo é:

S = S0 + v0t +  1 at2
                     
2

Quando v0 é igual a zero e se considerarmos que S0 também é zero no início movimento, podemos reescrever a equação acima da seguinte forma:

S = at2
 
2

Assim, podemos concluir que a distância percorrida é proporcional ao quadrado do tempo.

Alternativa: C.

 

03) Um automóvel parte do repouso e atinge a velocidade de 100 km/h em 8s. Qual é a aceleração desse automóvel?


Resolução:

Dados:

V = 100 km/h = 27,7 m/s
t = 8 s

Utilizamos a equação:

a = v
      t

E substituímos os dados:

a = 27,7
       8

a = 3,46 m/s2

 

04) Uma partícula em movimento retilíneo movimenta-se de acordo com a equação v = 10 + 3t, com o espaço em metros e o tempo em segundos. Determine para essa partícula:

 

a) A velocidade inicial

b) A aceleração

c) A velocidade quando t=5s e t= 10s

 

Resolução:

a) Para encontrar o valor da velocidade inicial, devemos comparar a equação acima com a função horária da velocidade:

V = vo + at
V = 10 + 3t

A partir dessa comparação, vemos que o termo que substituiu a velocidade inicial (v0) da fórmula é o número 10. Portanto, podemos concluir que v= 10 m/s

 

b) Comparando novamente as equações, vemos que o que substitui a aceleração (a) na equação é o número 3.

Portanto, a = 3 m/s2

 

c) Quando t = 5s

v = 10 + 3.5
v = 10 + 15
v = 25 m/s

Quando t = 10 s

v = 10 + 3.10
v = 10 + 30
v = 40 m/s

 

 

Gráficos do Movimento Retilíneo Uniformemente Variado

01) A velocidade de uma partícula que se encontra na posição 20m em t = 0, varia segundo a tabela mostrada abaixo:

 

velocidade  (m/s)

30

50

70

90

tempo (s)

10

12

14

16

 

Observação: a velocidade inicial corresponde ao tempo t = 0 considere o movimento retilíneo.

Determine:

a) a aceleração 

b) as funções horárias da velocidade e do espaço

c) o instante que muda de sentido, se houver 

d) a velocidade em t = 50s 

e) a velocidade média entre 10s e 14s 

 

Resolução:

a) a aceleração 

a = Δv/Δt

a = (50m/s - 30m/s)/(12s - 10s)

a = 20m.s-1/2s

a = 10 m/s2

b) as funções horárias da velocidade e do espaço

v = - 70 + 10t

s = so +vo.t + 1/2. (at2) (substitui os dados)

s = 20 - 70t + 5t2

c) o instante que muda de sentido, se houver 

v = - 70 +10t

0 = -70 +10t

70 =10t

t = 70/10

t = 7 s

d) a velocidade em t = 50s 

v = - 70 + 10.50

v = - 70 + 500

v = 430 m/s

e) a velocidade média entre 10s e 14s (Acha a área do gráfico v(t) = - 70 + 10t no intervalo considerado e divide pelo respectivo tempo)

d) o instante em que a velocidade é 400 m/s  

400 = -70 +107

400 + 70 = 10t

470 = 10t

t = 470/10

t = 47 s

 

02) O movimento retilíneo de um objeto obedece ao gráfico abaixo:

Determine:

a) a posição inicial (so= 3 m)

b) a velocidade em t = 0  (vo= -4 m/s)

c) a aceleração (2 m/s2)

d) o instante que inverte o sentido do movimento  (t = 2 s)

e) a velocidade em t = 10s  (v = 16 m/s)

f) a distância percorrida entre 5 segundos e 25 segundos  (570 m).

 

03) A velocidade de uma patícula aumenta uniformemente de 36km/h para 108km/h em 5 segundos em linha reta.

 

Calcule:

a) a sua aceleração   

b) a distância percorrida em 40 segundos

c) a sua velocidade em t = 25 segundos  

d) o instante onde a sua velocidade é 50m/s  

 

Resolução:

a) a sua aceleração   

vo = 36 km/h = 10 m/s

v = 108 km/h = 30 m/s

t = 5 s

a = Δv/Δt

a = (30m/s - 10m/s)/5s

a = 20 / 5

a = 4 m/s2

b) a distância percorrida em 40 segundos (Área da região limitada pelo gráfico de v = 10 + 4.t no intervalo de 0 a 40 s e o eixo dos tempos)

c) a sua velocidade em t = 25 segundos  

v = 10 + 4.t

v = 10 + 4.25

v = 10 + 100

v = 110 m/s

d) o instante onde a sua velocidade é 50m/s  

v = 10 4.t

50 = 10 +4t

50 - 10 = 4t

40 = 4t

t = 40/4

t = 10 s

 

04) O movimento de uma paríticula é descrita pela função s(t) = 1200 - 70t + t² com as unidade no SI. Para uma trajetória retilínea, detemine:

a) a posição inicial  (1200 m)

b) a velocidade em t = 0   (- 70 m/s)

c) a sua aceleração 

a/2 = 1

a =2 m/s2

d) a velocidade em t = 30s  

v = vo + v.t

v = - 70 +2t

v = -70 + 2.30

v = - 70 + 60

v = - 10 m/s

e) o instante que o movimento inverte o sentido 

v = - 70 + 2t

0 = - 70 +2t

70 =2t

t = 70/2

t = 35 s

f) o instante em que v = 33m/s 

v = - 70 +2t

33 = - 70 +2t

33 + 70 = 2t

103 =2t

t = 103/2

t = 51,5 s

g) a velocidade média entre t = 2s e t = 8s (faz o gráfico de v = - 70 +  2t e calcula a área da região corresponde ao intervalo considerado. Divide pelo respectivo intervalo de tempo.

 

05) A velocidade de um móvel que parte da origem dos espaços e move-se em linha reta, varia com o tempo segundo o gráfico v = f(t) abaixo. 

Calcule:

a) a aceleração (2,5 m/s2)

b) a velocidade em t = 30 segundos  (80 m/s)

c) o instante em que a velocidade é 100 m/s (38 s)

d) a posição em t = 10 segundos  (175 m)

e) a posição em t = 50s (3375 m)

f) a distância percorrida entre t = 5 s e t = 20 s (543,75 m)

 

06) A velocidade de um móvel varia segundo a tabela abaixo. em t = 0 ele encontra-se  na posição 50m.

 

velocidade (m/s)

300

250

200

150

tempo (s)

1

2

3

4

 

Sendo o movimento retilíneo, determine:

a) a aceleração (- 50 m/s2)

b) as funções horárias da velocidade e do espaço (v = 350 - 50t; s = 50 +350t - 25t2)

c) o instante que muda de sentido, se houver (7 s)

d) a velocidade em t = 30s (- 1150 m/s)

e) o instante em que a velocidade é 50 m/s  (6 s)

 

07) Duas partículas movem-se em linha reta segundo as funções horárias SA = 100 + 20t e SB = - 44 + 20t + t² (SI).

 

Determine:

a) o instante que elas se encontram (12 s);

b) a distância percorrida por cada uma até o encontro (dA= 240 m; dB = 384 m)

c) as velocidades das partículas em t = 4s  (vA= 20 m/s; vB = 28 m/s)

d) a distância que separa as partículas em t = 20s(256 m)

e) O instante que a partícula B inverte o sentido do movimento  (não há)

 

08) No instante t = 0s um  uma moto encontra parada em um sinal luminoso quando passa por ela um carro com velocidade constante de 72km/h. Neste mesmo instante  a moto parte em linha reta com aceleração constante de 4m/s².

 

Determine:

a) o instante que a moto acompanha o carro  

b) a distância que cada um percorre até o encontro  

 

Resolução:

v = 72 km/h = 20 m/s

a = 4 m/s2

SM = So + (1/2). 4t2 Sc = So + 20t

a) o instante que a moto acompanha o carro  

1/2.4t2 = 20t

2t2 - 20t = 0

t(2t - 20) = 0

t = 0 ou 2t - 20 = 0

2t = 20

t = 20/2

t = 10 s

b) a distância que cada um percorre até o encontro  

ΔS = v . t

ΔS = 20 m/s . 10s

ΔS = 200 m

 

09) Um ônibus entra em um viaduto de 180m de comprimento com velocidade 108km/h e sai do mesmo com velocidade de 36km/h em  10 segundos. Qual o tamanho do referido ônibus?

vo = 36 km/h = 10 m/s v = 108 km/h = 30 m/s           

Δt =10 s

Sejam   Vm = ΔS/Δt  e Vm =  (vo + v)/2   → ΔS/Δt = (Vo + V)/2

(180 + x)/10 = (10 + 30)/2

(180 + x)/10 = 20

180 + x = 200

x = 200 - 180

x = 20 m

 

10) A velocidade de um móvel varia em linha reta com o tempo segundo a equação v = 10 +4t com as unidades no S.I. Calcule a distância percorrida entre 2 e 5s. (72 m)

 

11) A velocidade de um móvel que passa pela posição s = 10 m em t = 0, varia com o tempo segundo o gráfico abaixo. A trajetória é retilínea. 

Calcule:

a) a aceleração (- 5 m/s2)

b) a velocidade em t = 20 segundos (- 80 m/s)

c) o instante em que a velocidade é -60 m/s  (16 s)

d) a posição em t = 10 segundos  (- 40 m)

e) a posição em t = 14 s (- 300m)

f) a distância percorrida entre t = 20 s e t = 30s  (1050 m)

 

12) No instante t = 0 a velocidade de um móvel é 180 km/h é freada até parar com aceleração de módulo igual 4 m/s2.

 

Calcule:

a) a distância percorrida até parar (312,5 m)

b) o tempo de movimento (12,5 s)

 

13) Um carro que se movimenta do ponto x ao ponto y com velocidade constante de 20m/s em 15 minutos, freia uniformemente a partir de y até parar em z com aceleração de 5m.s-2. Calcule a distancia percorrida de x até z e o tempo gasto do ponto y ao ponto z.

( distância = 18040 m e t = 4 s )

 

14) A partir do instante t = 0 um automóvel percorre 2300m, em trajetória retilínea,  com movimento descrito pela função horária  v = vo + 10t até t = 20s onde v = 215 m/s. Calcule a a velocidade do automóvel em t = 100s e a distância percorrida no intervalo 2 ≤ t ≤ 30 s. Despreze o comprimento do carro. ( v = 1015 m/s e distância = 4900 m)

 

15) No instante t = 0 um móvel A está em repouso quando passa por ela outro móvel B com velocidade constante como é mostrado na figura seguinte.  Eles correm na mesma trajetória retilínea.

a) o instante que o móvel A alcança o móvel B(8 s)

b) a distância que eles percorrem até o instante que eles estão na mesma posição (320m)

 

16) A função horária de uma partícula é v = 50 + at e em 15 segundos ele alcança 200 m/s. Determine a distância percorrida entre 10 e 30 segundos e a velocidade média neste intervalo. ( 5000m e  250 m/s)

 200 = 50 + a.15

200 - 50 = 15.a

150 = 15a

a = 150/15

a = 10 m/s2.

 

Esta é a função horária: v = 50 + 10t  (é só fazer o gráfico v x t e calcular a área da região limitada pelo gráfico e o eixo dos tempos, do referido intervalo de tempo, para achar a distância Δs percorrida. Usa v = Δs/Δt  com Δt =20s para calcular a velocidade média)

 

17) No diagrama v x t cujo gráfico forma um ângulo de 30º com o eixo dos tempos, uma partícula realiza um MRUV durante 15 segundos. Em t = 0 a sua velocidade é 10√3 m/s.

 

Determine:

a) a aceleração (√3/3 m/s2)

b) a velocidade em t = 15 segundos (15√3 m/s)

c) a distância percorrida entre 3 e 21 segundos (252√3 m)

 

18) A velocidade de um móvel varia em linha reta com o tempo segundo o gráfico v x t abaixo.

Calcule:

a) a distância percorrida entre 20 segundos e 40 segundos (175 m);

b) a velocidade média entre 20s e 40s (8,75 m/s);

c) a aceleração entre 0 e 20 s e entre 30s e 40s (0,25 m/s2; - 1,5 m/s2);

d) a distância percorrida entre 0 e 40 s   (225 m).

 

19) Um móvel movimenta-se da origem dos espaços segundo o gráfico abaixo em movimento retilíneo.

Determine:

a) a função horária da velocidade;

b) o instante que muda de sentido;

c) o intervalo em que o movimento é acelerado e retardado;

d) a velocidade em t = 100 segundos;

e) o instante onde v = 120 m/s;

f) a posição em t = 40 s.

 

20) A velocidade de um corpo, em movimento retilíneo, varia com o tempo segundo o gráfico abaixo:

Determine:

a) a distância percorrida em entre 0 e 6 segundos;

b) a velocidade escalar média entre 0 e 6 s;

c) o instante que muda de sentido;

d) a aceleração escalar entre 0 e 1 segundo;

e) a aceleração escalar entre 3 e 5 segundos;

f) a máxima velocidade que ele consegue atingir no sentido progressivo;

g) o tipo de movimento nos intervalos 0≤ t ≤ 1s, 1 ≤ t ≤ 3s,  3 ≤ t ≤ 5s e 5 ≤  t≤ 6s

 

21) Um corpo que move-se em trajetória retilínea tem a sua velocidade variando com o tempo segundo o gráfico abaixo:

Determine:

a) a classificação do movimento como progressivo ou retrógrado no intervalo 0 ≤ t ≤ 6 s;

b) a classificação do movimento como progressivo ou retrógrado no intervalo 22 ≤ t ≤ 28 s;

c) a classificação como acelerado ou retardado no intervalo  6 ≤ t ≤ 10 s;

d) a classificação como acelerado ou retardado no intervalo  6 ≤ t ≤ 10 s;

e) a classificação como acelerado ou retardado no intervalo  18 ≤ t ≤ 22 s;

f) a classificação como acelerado ou retardado no intervalo  28 ≤ t ≤ 30 s;

g) a distância percorrida entre 20 e 30 s;

h) a velocidade escalar média entre 20 e 30 segundos;

i) a velocidade entre t = 7 segundos;

j) a velocidade em t = 21 segundos;

k) os instantes que muda de sentido entre o e 25 segundos.

 

22) Um corpo que move-se em trajetória retilínea tem a sua posição variando com o tempo segundo o gráfico abaixo:

Determine:

a) os instantes que passa pela origem dos espaços;

b) os instantes que muda de sentido;

c) a classificação do movimento como acelerado ou retardado no intervalo  0 ≤ t ≤ 8 h;

d) a classificação do movimento como acelerado ou retardado no intervalo  8 ≤ t ≤ 11 h;

e) a classificação do movimento como progressivo ou retrógrado em t ≥ 11 h;

f) a velocidade em t = 5 h;

g) a posição em t = 80 h;

h) a velocidade em s = -300 km.

 

24) A posição de uma partícula que em t = 0 se encontra na origem dos espaços varia com o tempo conforme a equação dx = v(t)dt onde dx e dt são as variações infinitesimais da posição e tempo respectivamente. Para o caso em que v(t) = 6t2, a posição desta partícula em t = 10 segundos será:

A) 500  m

B) 1000 m

C) 1500 m

D) 2000 m

F) 2500 m

 

25) Um ponto material move-se segundo a função horária v(2t - 4) = 8 + 6t em trajetória retilínea. Quando a velocidade for calculada em v(5t + 3) a sua aceleração será:

A) 10 m.s-2

B)s-2

C) 20 m.s-2

D) 25 m.s-2

E) 30 m.s-2

 

26) A função  s = so + vo.t + (1/2)at2 é válida para movimentos de corpos com aceleração constante. Se a aceleração de um móvel for dada por a(t) = At + B, então para este novo caso a sua posição varia com o tempo por:

 

A) s = so+ vot + t2/A+ t2/B

B)s = so+ vot + Bt2/2 +  At3/3  

C) s = so+ vot3+ (A + B)t2/6

D) s = so + vot3 + (A.B) t2/2

E) s = so + vot2 + t2/2 + (A/B) t3/3  

 

27) A aceleração de um móvel , em linha reta, varia com o tempo segundo a função a(t) = 2t + 5, com as unidades no S.I.  

 

Determine:

a) a velocidade em t = 20 segundos supondo que v = 0 em t = 0;

b) a posição em t = 8 segundos supondo que x = 0 em t = 0;

c) a distância percorrida entre 2 e 12 segundos;

d) a velocidade escalar média entre 2 e 12 segundos.  

 

28) Uma partícula move-se no plano (xy) segundo as componentes  x(t) = 2t2 + t + 4 e y(t) = t2 - 4t + 5 com as unidade no SI.  

 

Determine:

a) a velocidade no instante t = 10s;

b) a aceleração desta partícula em qualquer instante.  

 

29) A velocidade de um móvel é descrito pela equação v(t) = 4t2 + 6t + 3, com as unidades no SI.  

 

Determine:

a) a sua aceleração em t = 2s  (22 m/s2)

b) a posição em t = 4s, considerando que x = 8m em t = 0 (153,3 m)  

 

30) O movimento de uma partícula tem a posição variando com o tempo segundo a equação x(t) = (2t + 1)4. Para as unidades no SI.  

 

Determine:

a) a velocidade em t = 2 s (1000 m/s)

b) a aceleração em t = 1 segundo (216 m/s2)  

 

31) Partindo da origem do sistema cartesiano e movendo-se no plano (xy) uma partícula tem no instante t = 0  uma velocidade de 8 m/s na direção x e 4 m/s na direção y. As componentes da aceleração são 2 m/s2 em x e - 4 m/s2 em y.  

 

Determine:

a) a aceleração instantânea em qualquer tempo;

b) o vetor velocidade em função do tempo;

c) a velocidade vetorial (módulo, direção e sentido) em t = 2 segundos;

d) a aceleração vetorial média entre 1 e 4 segundos;

e) o vetor posição em função do tempo;

f) o vetor posição em t = 1 segundo;

g) o vetor posição em t = 5 segundos;

h) a velocidade vetorial média entre 1 e 5 segundos.  

 

32) O vetor posição de uma partícula que se move-se no plano (xy) num certo instante é r = (4t +3t2)i + (-2t + 4t2)j. Para esta partícula, no S.I.  

 

Determine:

a) a velocidade vetorial em função do tempo;

b) a aceleração;

c) a velocidade (módulo, direção e sentido) em t = 2 segundos;

d) a velocidade vetorial média entre 1 e 11s.

 

32) O movimento de um móvel, em trajetória retilínea, é realizado segundo o gráfico abaixo. Ele é movimento uniformemente variado em apenas alguns intervalos de tempo e não no intervalo todo de 0 a 8h.

 

Determine:

a) a aceleração entre os instantes 0 e 2h, em km/h2

b) a aceleração entre os instantes 4 e 6h, em km/h2

c) a classificação do movimento como acelerado ou retardado no intervalo 0 ≤ t ≤ 2h

d)a classificação do movimento como acelerado ou retardado no intervalo 4≤ t ≤ 6h

e) a classificação do movimento como progressivo ou retrógrado no intervalo 2 ≤ t ≤ 4 h

f)a classificação do movimento como progressivo ou retrógrado no intervalo 6 ≤ t ≤ 8 h

g) a velocidade em t = 0,3h em km/h e em m/s

h) a velocidade em t = 4,2h em km/h e em m/s

i) os instantes que muda de sentido

 

 

QUESTÕES – MOVIMENTO UNIFORMEMENTE VARIANDO (M.U.V.)

01)  (Fuvest) um veículo parte do repouso em movimento retilíneo e acelera com aceleração escalar constante e igual a 2,0 m/s2.

Pode-se dizer que sua velocidade escalar e a distância percorrida após 3,0 segundos, valem, respectivamente:

A) 6,0 m/s e 9,0m

B) 6,0m/s e 18m

C) 3,0 m/s e 12m

D) 12 m/s e 35m

E) 2,0 m/s e 12 m

 

02) (FUND. CARLOS CHAGAS) Dois móveis A e B movimentam-se ao longo do eixo x, obedecendo às equações móvel A: xA = 100 + 5,0t e móvel B: xB = 5,0t2, onde xA e xB são medidos em m e t em s.

Pode-se afirmar que:

A) A e B possuem a mesma velocidade;

B) A e B possuem a mesma aceleração;

C) o movimento de B é uniforme e o de A é acelerado;

D) entre t = 0 e t = 2,0s ambos percorrem a mesma distância;

E) a aceleração de A é nula e a de B tem intensidade igual a 10 m/s2.

 

03) (MACKENZIE) Um móvel parte do repouso com aceleração constante de intensidade igual a =  2,0m/s2 em uma trajetória retilínea. Após 20s, começa a frear uniformemente até parar a 500m do ponto de partida.

Em valor absoluto, a aceleração de freada foi:

A) 8,0 m/s2

B) 6,0 m/s2

C) 4,0 m/s2

D) 2,0 m/s2

E) 1,6 m/s2

 

04) (UFMA) Uma motocicleta pode manter uma aceleração constante de intensidade 10m/s2. A velocidade inicial de um motociclista, com esta motocicleta, que deseja percorrer uma distância de 500m, em linha reta, chegando ao final desta com uma velocidade de intensidade 100m/s é:

A) zero

B) 5,0 m/s

C) 10 m/s

D) 15 m/s

E) 20 m/s

 

05) (UFPA) Um ponto material parte do repouso em movimento uniformemente variado e, após percorrer 12m, está animado de uma velocidade escalar de 6,0m/s. A aceleração escalar do ponto material, em m/s vale:

A) 1,5

B) 1,0

C) 2,5

D) 2,0

E) n.d.a.

 

06) (UNIP) Na figura representamos a coordenada de posição x, em função do tempo, para um móvel que se desloca ao longo do eixo Ox.

Os trechos AB e CD são arcos de parábola com eixos de simetria paralelos ao eixo das posições. No intervalo de tempo em que o móvel se aproxima de origem dos espaços o seu movimento é:

A) uniforme e progressivo;

B) retrógrado e acelerado;

C) retrógrado e retardado;

D) progressivo, retardado e uniformemente variado;

E) progressivo, acelerado e uniformemente.

 

07) (PUCC) Um vaso de flores cai livremente do alto de um edifício. Após ter percorrido 320cm ele passa por um andar que mede 2,85 m de altura. Quanto tempo ele gasta para passar por esse andar? Desprezar a resistência do ar e assumir g = 10 m/s2.

A) 1,0s

B) 0,80s

C) 0,30s

D) 1,2s

E) 1,5s

 

08) (PUCC) Duas bolas A e B, sendo a massa de A igual ao dobro da massa de B, são lançadas verticalmente para cima, a partir de um mesmo plano horizontal com velocidades iniciais. Desprezando-se a resistência que o ar pode oferecer, podemos afirmar que:

A) o tempo gasto na subida pela bola A é maior que o gasto pela bola B também na subida;

B) a bola A atinge altura menor que a B;

C) a bola B volta ao ponto de partida num tempo menor que a bola A;

D) as duas bolas atingem a mesma altura;

E) os tempos que as bolas gastam durante as subidas são maiores que os gastos nas descidas.

 

09) (UFPR) Um corpo é lançado verticalmente para cima, atinge certa altura, e desce. Levando-se em conta a resistência do ar, pode-se afirmar que o módulo de sua aceleração é:

A) maior, quando o corpo estiver subindo;

B) maior, quando o corpo estiver descendo;

C) igual ao da aceleração da gravidade, apenas quando o corpo estiver subindo;

D) o mesmo, tanto na subida quanto na descida;

E) igual ao da aceleração da gravidade, tanto na subida quanto na descida.

 

10) (UCPR) Num local onde a aceleração da gravidade vale 10 m/s2 uma pedra é abandonada de um helicóptero no instante em que este está a uma altura de 1000m em relação ao solo. Sendo 20s o tempo que a pedra gasta para chegar ao solo, pode-se concluir que no instante do abandono da pedra o helicóptero: (Desprezam-se as resistências passivas)

A) subia

B) descia

C) estava parado

D) encontrava-se em situação indeterminada face aos dados;

E) esta situação é impossível fisicamente.

 

GABARITO: 01A – 02E – 03A – 04A – 05A – 06D – 07C – 08D – 09A – 10A.

 

EXERCÍCIOS DE: Equação da velocidade de um MUV e Gráfico horário da velocidade de um MUV

 

01) (UFB) Um gato realiza um MUV em trajetória retilínea e horizontal que obedece à função horária da velocidade V= – 20 + 5t em unidades do SI. Pede-se:

a) a velocidade inicial e a aceleração

b) o instante em que ele muda o sentido de seu movimento

c) classificar o movimento em progressivo ou retrógrado, acelerado ou retardado, orientando a trajetória para a direita.

Qual o tipo de movimento do gato nos instantes 2s e 10s

 

02) (UFB) No gráfico abaixo, da velocidade de um móvel em MUV em função do tempo, pede-se determinar:

a) a velocidade inicial Vo e a aceleração a

b) o instante em que o móvel inverte o sentido de seu movimento

c) classificar o movimento

d) o deslocamento sofrido no intervalo de tempo compreendido entre 0 e 4s

 

03) (PUC-RJ) Considere o movimento de um caminhante em linha reta. Este caminhante percorre os 20,0 s iniciais à velocidade constante v1 = 2,0 m/s.

Em seguida, ele percorre os próximos 8,0 s com aceleração constante a = 1 m/s2 (a velocidade inicial é 2,0 m/s). Calcule a velocidade final do caminhante.

 

04)  (UFSM-RS) Ao preparar um corredor para uma prova rápida, o treinador observa que o desempenho dele pode ser descrito, de forma aproximada, pelo seguinte gráfico:

A velocidade média desse corredor, em m/s, é de

A) 8,5                  

B) 10,0                 

C) 12,5                  

D) 15,0                  

E) 17,5

 

05) (FUVEST-SP) Na figura a seguir estão representadas as velocidades, em função do tempo, desenvolvidas por um atleta, em dois treinos A e B, para uma corrida de 100m rasos.

Com relação aos tempos gastos pelo atleta para percorrer os 100m, podemos afirmar que, aproximadamente:

A) no B levou 0,4s a menos que no A     

B) a) no A levou 0,4s a menos que no B     

C) a) no B levou 1,0s a menos que no A

D)  no A levou 0,4s a menos que no B     

E) no A e no B levou o mesmo tempo

 

06) (CFT-CE) Observe o movimento da moto a seguir, supostamente tomada como partícula.

a) O instante em que sua velocidade será de 20m/s.

b) O deslocamento efetuado até este instante.

 

07) (UNIFESP-SP) A velocidade em função do tempo de um ponto material em movimento retilíneo uniformemente variado, expressa em unidades do SI, é v = 50 – 10t. Pode-se afirmar que, no instante t = 5,0 s, esse ponto material tem

A) velocidade e aceleração nulas.                          

B) velocidade nula e daí em diante não se movimenta mais.

C) velocidade nula e aceleração a = – 10 m/s2.     

D) velocidade nula e a sua aceleração muda de sentido.

E) aceleração nula e a sua velocidade muda de sentido.

 

08) (UFRS-RS) Um automóvel que trafega com velocidade constante de 10 m/s, em uma pista reta e horizontal, passa a acelerar uniformemente à razão de 60 m/s em cada minuto, mantendo essa aceleração durante meio minuto. A velocidade instantânea do automóvel, ao final desse intervalo de tempo, e sua velocidade média, no mesmo intervalo de tempo, são, respectivamente:

A) 30 m/s e 15 m/s.         

B) 30 m/s e 20 m/s.          

C) 20 m/s e 15 m/s.         

D) 40 m/s e 20 m/s.          

E) 40 m/s e 25 m/s.

 

09) (PUC-PR) Um automóvel trafega em uma estrada retilínea. No instante t = 0 s, os freios são acionados, causando uma aceleração constante até anular a velocidade, como mostra a figura.

A tabela mostra a velocidade em determinados instantes

Com base nestas informações, são feitas algumas afirmativas a respeito do movimento:

I. O automóvel apresenta uma aceleração no sentido do deslocamento.

II. O deslocamento do veículo nos primeiros 2 s é 34 m.

III. A aceleração do veículo é -1,5 m/s2.

IV. A velocidade varia de modo inversamente proporcional ao tempo decorrido.

V. A velocidade do veículo se anula no instante 7,5 s.

 

Está correta ou estão corretas:

A) somente I.              

B) I e II.                

C) somente III.                  

D) IV e V.                  

E) II e V.

 

10) (MACKENZIE-SP) A aceleração de um móvel, que parte do repouso, varia com o tempo de acordo com o gráfico abaixo.

O instante, contado a partir do início do movimento, no qual o móvel pára, é:

A) 5s                     

B) 6s                    

C) 8s                     

D) 13s                     

E) 18s

 

11) (UFPE) O gráfico da velocidade em função do tempo de um ciclista, que se move ao longo de uma pista retilínea, é mostrado a seguir.

 Considerando que ele mantém a mesma aceleração entre os instantes t = 0 e t = 7 segundos, determine a distância percorrida neste intervalo de tempo. Expresse sua resposta em metros.

 

12) (UFB) Considerando um diagrama v x t, onde v é a velocidade instantânea de uma partícula no instante t, o que representa:

a) a declividade ou inclinação da reta representativa do gráfico?

b) o que representa a área sob a reta?

 

13) (FUVEST-SP) O gráfico na figura descreve o movimento de um caminhão de coleta de lixo em uma rua reta e plana, durante 15s de trabalho

a) Calcule a distância total percorrida neste intervalo de tempo.

b) Calcule a velocidade média do veículo.

 

14) (Ufpe) Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação com o tempo é mostrada no gráfico a seguir.

 Sabendo-se que no instante t = 0 a partícula está em repouso, calcule a sua velocidade no instante t = 8,0 s, em m/s.

 

15)  (UNESP-SP) O motorista de um veículo A é obrigado a frear bruscamente quando avista um veículo B à sua frente, locomovendo-se no mesmo sentido, com uma velocidade constante menor que a do veículo A. Ao final da desaceleração, o veículo A atinge a mesma velocidade que B, e passa também a se locomover com velocidade constante. O movimento, a partir do início da frenagem, é descrito pelo gráfico da figura.

Considerando que a distância que separava ambos os veículos no início da frenagem era de 32 m, ao final dela a distância entre ambos é de

A) 1,0 m.                     

B) 2,0 m.                    

C) 3,0 m.                      

D) 4,0 m.                      

E) 5,0 m.

 

16) (CFT-MG) Três carros A, B, e C, trafegando numa avenida reta, estão lado a lado, quando o semáforo a 55 metros à frente fecha. Sabendo-se que o gráfico a seguir mostra a variação da velocidade dos veículos a partir desse momento, é correto afirmar que irá(ão) ultrapassar o sinal somente o(s) carro(s)

A) A.                     

B) B.                     

C) A e B.                          

D) A e C.

 

17) (UFU-MG) O gráfico a seguir representa a velocidade em função do tempo de um automóvel que parte do repouso. A velocidade máxima permitida é de 72 km/h. No instante t, quando o motorista atinge essa velocidade limite, ele deixa de acelerar o automóvel e passa a se deslocar com velocidade constante.

Sabendo-se que o automóvel percorreu 1,2 km em 90 segundos, o valor do instante t é

A) 80 s.                 

B) 30 s.                 

C) 60 s.                

D) 50 s.

 

18) (UnB-DF) A tabela abaixo indica a velocidade instantânea  de um objeto, em intervalos de um segundo.

As velocidades instantâneas do objeto nos instantes 3,60s e 5,80s são, respectivamente:

A) 17,5m/s e 20,5m/s         

B) 13,8m/s e 22,6m/s         

C) 14,5m/s e 19,5m/s         

D) 15,5m/s e 22,2m/s         

E) 8,20m/s e 12,2m/s

 

19) (Olimpíada Brasileira de Física) Uma partícula executa um movimento retilíneo uniformemente variado. Num dado instante a partícula tem velocidade 50m/s e aceleração negativa de módulo 0,2m/s2. Quanto tempo decorre até a partícula alcançar a mesma velocidade em sentido contrário?

A) 500s                   

B) 250s                      

C) 125s                        

D) 100s                       

E) 10s

 

20) (CFT-MG) O movimento retilíneo de um corpo é descrito pela equação v = 10 – 2t em que v é a velocidade, em m/s, e t é o tempo, em segundos.

Durante os primeiros 5,0 s, a distância percorrida por ele, em metros, é:

A) 10.                    

B) 15.                      

C) 20.                       

D) 25.

 

21) (PUC-RJ) O movimento de um objeto pode ser descrito pelo gráfico velocidade versus tempo, apresentado na figura a seguir.

Podemos afirmar que:

A) a aceleração do objeto é 2,0 m/s2, e a distância percorrida em 5,0 s é 10,0 m.

B) a aceleração do objeto é 4,0 m/s2, e a distância percorrida em 5,0 s é 20,0 m.

C) a aceleração do objeto é 2,0 m/s2, e a distância percorrida em 5,0 s é 25,0 m.

D) a aceleração do objeto é 2,0 m/s2, e a distância percorrida em 5,0 s é 10,0 m.

E) a aceleração do objeto é 2,0 m/s2, e a distância percorrida em 5,0 s é 20,0 m.

 

22) (PUC-RJ) É CORRETO afirmar que a distância percorrida pelo objeto entre t = 0 e t = 1,4s foi aproximadamente de:

A) 0,7 m                      

B) 1,8 m                      

C) 0,1 m                       

D) 1,6 m

 

23) (UERJ-RJ) A velocidade de um corpo que se desloca ao longo de uma reta, em função do tempo, é representada pelo seguinte gráfico:

Calcule a velocidade média desse corpo no intervalo entre 0 e 30 segundos.

 

24) (Ufrj-RJ) Um móvel parte do repouso e descreve uma trajetória retilínea durante um intervalo de tempo de 50s, com a aceleração indicada no gráfico a seguir.

a) Faça um gráfico da velocidade do móvel no intervalo de 0 até 50s.

b) Calcule a distância percorrida pelo móvel nesse intervalo.

 

25) (UNIFESP-SP) A função da velocidade em relação ao tempo de um ponto material em trajetória retilínea, no SI, é v = 5,0 – 2,0 t.

Por meio dela pode-se afirmar que, no instante t = 4,0 s, a velocidade desse ponto material tem módulo

A) 13 m/s e o mesmo sentido da velocidade inicial.                          

B) 3,0 m/s e o mesmo sentido da velocidade inicial.

C) zero, pois o ponto material já parou e não se movimenta mais.     

D) 3,0 m/s e sentido oposto ao da velocidade inicial.

E) 13 m/s e sentido oposto ao da velocidade inicial.

 

26) (UFPE-PE)  Um motorista dirige um carro com velocidade constante de 80 km/h, em linha reta, quando percebe uma “lombada” eletrônica indicando a velocidade máxima permitida de 40 km/h. O motorista aciona os freios, imprimindo uma

desaceleração constante, para obedecer à sinalização e passar pela “lombada” com a velocidade máxima permitida. Observando-se a velocidade do carro em função do tempo, desde o instante em que os freios foram acionados até o instante de passagem pela “lombada”, podemos traçar o gráfico abaixo.

Determine a distância percorrida entre o instante t = 0, em que os freios foram acionados, e o instante t = 3,0 s, em que o carro ultrapassa a “lombada”. Dê sua resposta em metros.

      

27) (UNCISAL-AL) João Gabriel, vestibulando da UNCISAL, preparando-se para as provas de acesso à

universidade, vai conhecer o local das provas. Sai de casa de carro e, partindo do repouso, trafega por uma avenida retilínea que o conduz diretamente ao local desejado. A avenida é dotada de cruzamentos com semáforos e impõe limite de velocidade, aos quais João Gabriel obedece. O gráfico que melhor esboça o comportamento da velocidade do carro dele, em função do tempo, desde que ele sai de casa até a chegada ao local da prova, onde estaciona no instante t’, é:

 

28) (UNEMAT-MT) O gráfico em função do tempo mostra dois carros A e B em movimento retilíneo.

Em t = 0 seg. os carros estão na mesma posição.

Com base na análise do gráfico, é correto afirmar.

A) Os carros vão estar na mesma posição nos instantes t = 0 seg. e t = 4,0 seg.

B) Os carros não vão se encontrar após t = 0, porque a velocidade de A é maior que a do carro B

C) Os carros vão se encontrar novamente na posição S = 10 m

D) Os carros não vão se encontrar, porque estão em sentidos contrários.

E) Os instantes em que os carros vão estar na mesma posição é t = 0 seg. e t = 8,0 seg.

 

29) (MACKENZIE-SP)  Dois automóveis A e B se movimentam sobre uma mesma trajetória retilínea,

com suas velocidades variando com o tempo de acordo com o gráfico a seguir. Sabe-se que esses móveis se encontram no instante 10 s. A distância entre eles, no instante inicial (t = 0 s), era de

A) 575 m                       

B) 425 m                         

C) 375 m                         

D) 275 m                         

E) 200 m 

 

30) (CFT-SC) O gráfico abaixo representa a variação da velocidade em função do tempo de uma

partícula em movimento uniformemente variado. Em relação à área abaixo da reta do gráfico, é correto afirmar que ela representa a:

A) aceleração média.           

B) velocidade média.            

C) variação da velocidade.           

D) distância percorrida pela partícula.                              

E) velocidade instantânea. 

 

31) (FUVEST-SP)  Na Cidade Universitária (USP), um jovem, em um carrinho de rolimã, desce a  rua do

Matão, cujo perfil está representado na figura a seguir, em um sistema de coordenadas em que o eixo Ox tem a direção horizontal.

No instante t = 0, o carrinho passa em movimento pela posição oy = yo e x = 0.

Dentre os gráficos das figuras a seguir, os que melhor poderiam descrever a posição x e a velocidade v do carrinho em função do tempo t são, respectivamente,

A) I e II.                             

B) I e III.                                

C) II e IV.                                

D) III e II.                             

E) IV e III. 

 

32) (UFRJ-RJ) Um avião vai decolar em uma pista retilínea. Ele inicia seu movimento na cabeceira da

pista com velocidade nula e corre por ela com aceleração média de 2,0 m/s2 até o instante em que levanta vôo, com uma velocidade de 80 m/s, antes de terminar a pista.

a) Calcule quanto tempo o avião permanece na pista desde o início do movimento até o instante em que levanta vôo.

b) Determine o menor comprimento possível dessa pista.

 

33) (UNICAMP-SP) O radar é um dos dispositivos mais usados para coibir o excesso de velocidade nas vias de trânsito. O seu princípio de funcionamento é baseado no efeito Doppler das ondas eletromagnéticas refletidas pelo carro em movimento.

Considere que a velocidade medida por um radar foi V = 72 km/h para um carro que se aproximava do aparelho.

Quando um carro não se move diretamente na direção do radar, é preciso fazer uma correção da velocidade medida pelo aparelho  Vm para obter a velocidade real do veículo Vr. Essa correção pode ser calculada a partir da fórmula Vm=Vr.cosα, em que α é o ângulo formado entre a direção de tráfego da rua e o segmento de reta que liga o radar ao ponto da via que ele mira. Suponha que o radar tenha sido instalado a uma distância de 50 m do centro da faixa na qual o carro trafegava, e tenha detectado a velocidade do carro quando este estava a 130 m de distância, como mostra a figura abaixo

Se o radar detectou que o carro trafegava a 72 km/h, sua velocidade real era igual a

A) 66,5 km/h                     

B) 36 3 km/h.                                  

C) 78 km/h.                                   

D) 144 / 3 km/h

 

34) (UFPE-PE) Dois veículos partem simultaneamente do repouso e se movem ao longo da mesma rodovia reta, um

ao encontro do outro, em sentidos opostos. O veículo A parte com aceleração constante igual a aA = 2,0 m/s2. O veículo B, distando d = 19,2 km do veículo A, parte com aceleração constante igual a aB = 4,0 m/s2.

Calcule o intervalo de tempo até o encontro dos veículos, em segundos.

 

35) (UERJ-RJ) Dois carros, A e B, em movimento retilíneo acelerado, cruzam um mesmo ponto em t = 0 s. Nesse

instante, a velocidade vo de A é igual

à metade da de B, e sua aceleração a corresponde ao dobro da de B. Determine o instante em que os dois carros se reencontrarão, em função de ve a.

 

36) (UEPA-PA) No Pará, o perigo relacionado às altas velocidades no trânsito tem aumentado os  riscos de acidentes, principalmente em Belém.

Considerando que a “distância de freagem” é a distância que o carro percorre desde o momento que os freios são acionados até parar e que o modelo matemático que expressa essa relação é dado por  D = K . V2, onde  D representa a distância de freagem em metros, K é uma constante e  V  é a velocidade em Km/h. Assim, um automóvel que tem seus freios acionados estando a uma velocidade de 80 Km/h ainda percorre 44 metros até parar. A distância de  freagem de um automóvel que tem seus freios acionados, estando a uma velocidade de 160 Km/h é:

A) 2 vezes a distância de freagem se estivesse a 80 Km/h.                  

B) 3 vezes a distância de freagem se estivesse a 80 Km/h.

C) 4 vezes a distância de freagem se estivesse a 80 Km/h.              

D) 5 vezes a distância de freagem se estivesse a 80 Km/h.

E) 6 vezes a distância de freagem se estivesse a 80 Km/h.

  

37) (AFA) Considere um móvel deslocando–se numa trajetória horizontal e descrevendo um movimento retilíneo uniformemente acelerado e

retrógrado. A alternativa que contém o gráfico que melhor representam movimento descrito pelo móvel é

 

38) (AFA) Um bloco se movimenta retilineamente, do ponto A até o ponto C, conforme figura abaixo

Sua velocidade v em função do tempo t, ao longo da trajetória, é descrita pelo diagrama v×t mostrado a seguir.

Considerando que o bloco passa pelos pontos A e B nos instantes 0 e t1, respectivamente, e para noponto C no instante t2, a razão entre as distâncias percorridas pelo bloco nos trechos BC e AB , vale

A) (t2 + t1)/t1                              

B) (t2 – t1)/t22        

C) (t2 – t1)/2t1                                 

D) (t2 + t1)/2t2

  

39) (ACAFE-SC) Para garantir a segurança no trânsito, deve-se reduzir a velocidade de um veículo em dias de chuva,

senão vejamos: um veículo em uma pista reta, asfaltada e seca, movendo-se com velocidade de módulo 36 km/h (10 m/s) é freado e desloca-se 5,0 m até parar. Nas mesmas circunstâncias, só que com a pista molhada sob chuva, necessita de 1,0 m a mais para parar. 

Considerando a mesma situação (pista seca e molhada) e agora a velocidade do veículo de módulo 108 km/h (30 m/s), a alternativa correta que indica a distância a mais para parar, em metros, com a pista molhada em relação a pista seca é:

A) 6         

B) 2         

C)1,5         

D) 9

 

GABARITO:

01

[a

[b Quando ele muda o sentido se seu movimento ele pára (V=0) e, a partir desse instante, o movimento que era progressivo se torna retrógrado  —  V=-20 + 5t  —  0=-20 + 5t  —  t=4s (instante em que ele pára para inverter o sentido do movimento)

c)

d) 2s – retrógrado retardado  —  10s – progressivo acelerado  —  Veja esquema acima)

02[ a) Vo=-8m/s  —  a=(8 – (-8))/(4 – 0)  —  a=16/4  —  a=4m/s2 ]. 

b[ V= Vo + at  —  V=-8 + 4t  —  inverte o sentido (pára) – V=0  —  0=-8 + 4t  —  t=2sou pelo gráfico que corresponde ao ponto onde a reta intercepta o eixo t.].

c[ entre 0 e 2s  —  retrógrado (V<0) e retardado (módulo de V está diminuindo)  —  após 2s  —  progressivo (V>0) e acelerado (módulo de V está aumentando)]

d[ ΔS=área entre 0 e 4s, que corresponde à soma das áreas hachuradas da figura abaixo

ΔS=b.h/ + b.h/2=2.(-8)/2 + 8.2/2  —  ΔS=0].

03[ Vo=2m/s  —  a=1ms2  —  V=Vo + at  —  V=2 + 1.8  —  V=10m/s] - 04B - 05B - 06 [a) t=10s ] e [b) ΔS=100m ]- 07C - 08[Vm=25m/s]09D - 10E - 11[ ΔS = 56m]12[ a) O ângulo α que a reta representativa da velocidade forma com um eixo horizontal é tal que tgα=ΔV/Δt corresponde à aceleração domóvel, pois a= ΔV/ Δt e é denominada coeficiente angular da reta ou declividade da reta. Observe que, se α é agudo, f(t) é crescente e a>0 e se α é obtuso , f(t) é decrescente e a<0] e [b) Em todo gráfico VXt a área entre a reta representativa e o eixo dos tempos é numericamente igual à variação de espaço ΔS, entre dois instantes quaisquer t1 e t2] - 13[ a) ΔS=área total=b.h/2 + (B + b).h/2 + b.h/2=3.8/2 + (4 + 2).12/2 + 2.12/2=1260  —  12 + 36 + 12=60m  —  ΔS=60m] e [b) Vm=60/16=3,75  —  Vm=3,75m] - 14[  V=8m/s ] – 15B  - 16A - 17C – 18C - 19A - 20D - 21C - 22A  - 23[ Vm=10m/s] - 24[ a) gráfico abaixo

[b) ΔS=área=b.h/2 + (B _ b).h/2=20.40/2 + (40 + 10).30/2  —  A distância percorrida é 1150m.] - 25D   - 26[ ΔS=49,95≈50m ] - 27E - 28A - 29A - 30D - 31A - 32[a) t = 40s]e [b) dm = 1.600m] - 33C - 34[  t = 80s ] - 35[ t = 4Vo/a] - 36C - 37B[a) Falsa, b) Correta, c) Falsa, d)  Falsa ] - 38C - 39D.

 

 

Exercícios - Gráficos do Movimento Uniformemente Variado

01) O movimento de um móvel, em trajetória retilínea, é realizado segundo o gráfico abaixo. Ele é movimento uniformemente variado em apenas alguns intervalos de tempo e não no intervalo todo de 0 a 8 h.

 

Determine:

a) a aceleração entre os instantes 0 e 2h, em km/h2;

b) a aceleração entre os instantes 4 e 6 h, em km/h2;

c) a classificação do movimento como acelerado ou retardado no intervalo 0 ≤ t ≤ 2h;

d) a classificação do movimento como acelerado ou retardado no intervalo 4≤ t ≤ 6h;

e) a classificação do movimento como progressivo ou retrógrado no intervalo 2 ≤ t ≤ 4 h;

f) a classificação do movimento como progressivo ou retrógrado no intervalo 6 ≤ t ≤ 8 h;

g) a velocidade em t = 0,3 h em km/h e em m/s;

h) a velocidade em t = 4,2h em km/h e em m/s;

i) os instante que muda de sentido.

 

02) O movimento retilíneo de um objeto obedece ao gráfico abaixo:

Determine:

a) a posição inicial  (resp: so = 3 m);

b) a velocidade em t = 0   (resp: vo = -4 m/s);

c) a aceleração  (resp: 2 m/s2);

d) o instante que inverte o sentido do movimento   (resp:t = 2 s);

e) a velocidade em t = 10s   (resp: v = 16 m/s);

f) a distância percorrida entre 5 segundos e 25 segundos   (resp: 570 m).

 

03) A velocidade de um móvel que parte da origem dos espaços e move-se em lina reta, varia com o tempo segundo o gráfico v = f(t) abaixo.

Calcule:

a) a aceleração  (resp: 2,5 m/s2);

b) a velocidade em t = 30 segundos   (resp: 80 m/s);

c) o instante em que a velocidade é 100 m/s  (resp: 38 s);

d) a posição em t = 10 segundos   (resp: 175 m);

e) a posição em t = 50s  (resp: 3375 m);

f) a distância percorrida entre t = 5 s e t = 20 s  (resp:543,75 m)

 

04) A velocidade de um móvel que passa pela posição s = 10 m em t = 0, varia com o tempo segundo o gráfico abaixo. A trajetória é retilínea.

Calcule:

a) a aceleração  (resp: - 5 m/s2);

b) a velocidade em t = 20 segundos  (resp: - 80 m/s);

c) o instante em que a velocidade é -60 m/s   (resp: 16 s);

d) a posição em t = 10 segundos   (resp: - 40 m);

e) a posição em t = 14 s  (resp: - 300m);

f) a distância percorrida entre t = 20 s e t = 30s   (resp: 1050 m)

 

05) No instante t = 0 um móvel A está em repouso quando passa por ela outro móvel B com velocidade constante como é mostrado na figura seguinte.  Eles correm na mesma trajetória retilínea. Calcule:

a) o instante que o móvel A alcança o móvel B   (resp: 8 s);

b) a distância que eles percorrem até o instante que eles estão na mesma posição (resp:320m) .

 

06) A velocidade de um móvel varia em linha reta com o tempo segundo o gráfico v x t abaixo.

Calcule:

a) a distância percorrida entre 20 segundos e 40 segundos  (resp: 175 m);

b) a velocidade média entre 20s e 40s  (resp: 8,75 m/s);

c) a aceleração entre 0 e 20 s e entre 30s e 40s  (resp: 0,25 m/s2; - 1,5 m/s2);

d) a distância percorrida entre 0 e 40 s    (resp: 225 m).

 

07) Um móvel movimenta-se da origem dos espaços segundo o gráfico abaixo em movimento retilíneo.

 

Determine:

a) a função horária da velocidade;

b) o instante que muda de sentido;

c) o intervalo em que o movimento é acelerado e retardado;

d) a velocidade em t = 100 segundos;

e) o instante onde v = 120 m/s;

f) a posição em t = 40 s.

 

08) A velocidade de um corpo, em movimento retilíneo, varia com o tempo segundo o gráfico abaixo:

 

Determine:

a) a distância percorrida em entre 0 e 6 segundos;

b) a velocidade escalar média entre 0 e 6 s;

c) o instante que muda de sentido;

d) a aceleração escalar entre 0 e 1 segundo;

e) a aceleração escalar entre 3 e 5 segundos;

f) a máxima velocidade que ele consegue atingir no sentido progressivo;

g) o tipo de movimento nos intervalos 0≤ t ≤ 1s, 1 ≤ t ≤ 3s,  3 ≤ t ≤ 5s e 5 ≤  t≤ 6s

 

09) Um corpo que move-se em trajetória retilílea tem a sua velocidade variando com o tempo segundo o gráfico abaixo:

Determine:

a) a classificação do movimento como progreesivo ou retrógrado no intervalo 0 ≤ t ≤ 6 s;

b) a classificação do movimento como progressivo ou retrógrado no intervalo 22 ≤ t ≤ 28 s;

c) a classificação como acelerado ou retardado no intervalo  6 ≤ t ≤ 10 s;

d) a classificação como acelerado ou retardado no intervalo  6 ≤ t ≤ 10 s;

e) a classificação como acelerado ou retardado no intervalo  18 ≤ t ≤ 22 s;

f) a classificação como acelerado ou retardado no intervalo  28 ≤ t ≤ 30 s;

g) a distância percorrida entre 20 e 30 s;

h) a velocidade escalar média entre 20 e 30 segundos;

i) a velocidade entre t = 7 segundos;

j) a velocidade em t = 21 segundos;

k) os instantes que muda de sentido entre o e 25 segundos.

 

10) Um corpo que move-se em trajetória retilílea tem a sua posição variando com o tempo segundo o gráfico abaixo:

Determine:

a) os instantes que passa pela origem dos espaços;

b) os intantes que muda de sentido;

c) a classificação do movimento como acelerado ou retardado no intervalo  0 ≤ t ≤ 8 h;

d) a classificação do movimento como acelerado ou retardado no intervalo  8 ≤ t ≤ 11 h;

e) a classificação do movimento como progressivo ou retrógrado em t ≥ 11 h;

f) a velocidade em t = 5 h;

g) a posição em t = 80 h;

h) a velocidade em s = -300 km.

 

 

GRANDEZA VETORIAL

 

Introdução - Os vetores apareceram no final do século 19, quando o americano Josiah Willard Gibbs e o inglês Oliver Heaviside desenvolveram independentemente a análise de vetores para expressar as novas leis do eletromagnetismo, que foram descobertas pelo físico escocês James Clerk Maxwell. Desde aquela época, os vetores se tornaram essenciais na física, mecânica, engenharia e em outras ciências para descrever forças matematicamente.

 

Cinemática Vetorial - Os conceitos da cinemática escalar vistos até aqui podem ser aplicados à cinemática vetorial, que também estuda o movimento dos corpos, mas definindo as grandezas vetoriais.

 

Grandezas Escalares - São definidas apenas pelo seu valor numérico e sua unidade de medida.

 

Exemplos: Tempo, Temperatura, Volume, Massa, Trabalho de uma Força, etc.

 

Grandezas Vetoriais – São aquelas que necessitam de uma direção e um sentido, além do valor numérico e da unidade de medida.

 

Exemplos: Velocidade, Aceleração, Força, Deslocamento, Empuxo, Campo elétrico, Campo magnético, Força peso, etc.

 

Vetor - É um ente matemático caracterizado por possuir um sentido, uma direção e um módulo (intensidade).

 

Operações com Grandeasas Vetoriais

 

Casos Especiais


 

 

EXERCÍCIOS -  CINEMÁTICA VETORIAL

 

01) Em que movimentos permanece constante:

a) o módulo da velocidade vetorial;

b) a direção de velocidade vetorial;

c) a velocidade vetorial.

 

02) (FATEC) Um automóvel percorre 6,0km para o norte e, em seguida 8,0km para o leste.

A intensidade do vetor posição, em relação ao ponto de partida é:

A) 10 km

B) 14 km

C) 2,0 km

D) 12 km

E) 8,0 km

 

03) Considere uma partícula descrevendo uma trajetória circular. O vetor posição associado ao movimento da partícula:

A) será constante;

B) terá módulo necessariamente constante;

C) somente terá módulo constante se a origem do sistema de coordenada for o centro da circunferência;

D) somente terá módulo constante se a origem do sistema de coordenadas pertencer a uma reta normal ao plano da trajetória e passando pelo centro da circunferência descrita;

E) será nulo.

 

04) (OSEC) Um móvel percorre uma trajetória circular de 1,00 metro de raio. Após percorrer um quarto de circunferência, o deslocamento do móvel é, aproximadamente:

A) 1,00m

B) 1,41m

C) 3,14m

D) 6,28m

E) n.d.a.

 

05) (MACKENZIE) Um corpo é atirado verticalmente para cima a partir do solo com velocidade inicial de módulo 50 m/s. O módulo de sua velocidade vetorial média entre o instante de lançamento e o instante em que retorna ao solo é:

A) 50 m/s

B) 25 m/s

C) 5,0 m/s

D) 2,5 m/s

E) zero

 

06) (PUC – RS) As informações a seguir referem-se a um movimento retilíneo realizado por um objeto qualquer.

I. A velocidade vetorial pode mudar de sentido.

II. A velocidade vetorial tem sempre módulo constante.

III. A velocidade vetorial tem direção constante.

 

A alternativa que representa corretamente o movimento retilíneo é:

A) I, II e III

B) Somente III

C) Somente II

D) II e III

E) I e III

 

07) Considere uma partícula em movimento. A respeito de sua velocidade vetorial (instantânea) assinale a opção falsa:

A) tem direção sempre tangente à trajetória;

B) tem sentido sempre concordante com o sentido do movimento;

C) tem intensidade sempre igual ao valor absoluto da velocidade escalar (instantânea);

E) somente é constante se o movimento for retilíneo e uniforme;

R) é constante no movimento circular e uniforme.

 

08) Considere uma partícula em movimento circular e uniforme. Assinale a opção falsa:

A) a velocidade escalar é constante;

B) a velocidade vetorial tem módulo igual ao da velocidade escalar;

C) a velocidade vetorial tem módulo constante;

D) a velocidade vetorial é variável;

E) a velocidade vetorial média e a velocidade escalar média têm módulos iguais.

 

09) Em um movimento com trajetória retilínea podemos afirmar:

A) a aceleração tangencial será nula;

B) a aceleração tangencial terá mesmo sentido da velocidade vetorial;

C) a aceleração tangencial terá sempre o mesmo sentido;

D) a aceleração tangencial, suposta não nula, terá sempre a mesma direção;

E) a aceleração tangencial será constante.

 

10) (UFPA) Uma partícula percorre, com movimento uniforme, uma trajetória não retilínea. Em cada instante teremos que:

A) Os vetores velocidade e aceleração são paralelos entre si;

B) A velocidade vetorial é nula;

C) Os vetores velocidade e aceleração são perpendiculares entre si;

D) Os vetores velocidade a aceleração têm direções independentes;

E) O valor do ângulo entre o vetor velocidade e o vetor aceleração muda de ponto a ponto.

 

GABARITO

[01

a) O módulo da velocidade vetorial é igual ao da velocidade escalar e será constante se o movimento for

b) A velocidade vetorial terá direção constante se a trajetória for retilínea.

c) Para a velocidade vetorial ser constante ela deve ser todas as suas características constantes e, portanto, o movimento deverá ser retilíneo e uniforme.] - 02A - 03D - 04B - 05E - 06E - 07E - 08E - 09D - 10C -

 

 

EXERCÍCIOS RESOLVIDOS - GRANDEZAS VETORIAIS / GRANDEZAS ESCALARES

01) Assinale a alternativa que contém apenas grandezas vetoriais.

A) Aceleração, velocidade, força, impulso, empuxo e trabalho.

B) Trabalho, aceleração, campo magnético, força centrípeta e temperatura.

C) Momento linear, campo magnético, campo elétrico e força.

D) Quantidade de movimento, campo magnético, energia e tempo

E) Energia, massa, peso, empuxo, campo elétrico e velocidade.

 

Resolução:

As grandezas vetoriais são aquelas que possuem módulo, direção e sentido. As grandezas que possuem apenas valor numérico (módulo) são chamadas de escalares.

A) Errada. Trabalho é uma quantidade de energia, por isso, é uma grandeza escalar.

B) Errada. Trabalho e temperatura são escalares.

C) Correta.

D) Errada. Energia e tempo são escalares.

E) Errada. Energia e massa são escalares.

Alternativa: C

 

02) Cotidianamente as grandezas massa e peso são confundidas como se fossem exatamente iguais.

 

Assinale a alternativa que indica corretamente a diferença entre massa e peso.

A) A massa é a quantidade de matéria de um corpo, por isso, é uma grandeza vetorial. O peso é a força com a qual o corpo é atraído pela Terra, por isso, é uma grandeza escalar.

B) O peso de um corpo é a força com a qual ele é atraído pela Terra, sendo, por essa razão, uma grandeza vetorial. A massa é a quantidade de matéria que compõe o corpo e é uma grandeza escalar.

C) Massa e peso são grandezas vetoriais. A diferença é que a definição de peso leva em consideração a aceleração da gravidade.

D) O peso é fruto do produto da massa pela gravidade, e a massa é fruto do produto do peso pela gravidade.

E) Todas as alternativas estão incorretas.

 

Resolução:

A força peso é o produto da massa pela aceleração da gravidade e é uma grandeza vetorial. A massa de um corpo é a quantidade de matéria que o compõe e é uma grandeza de tratamento escalar.

Alternativa: B

 

03) Ao perguntar a diferença entre grandezas escalares e vetoriais, um professor de Física obteve as seguintes respostas:

João: As grandezas escalares possuem apenas valores numéricos. Já as vetoriais possuem, além de valor numérico, direção e sentido. Força e aceleração são exemplos de grandezas vetoriais. Massa e empuxo são exemplos de grandezas escalares.

Pedro: As vetoriais têm duas características: módulo e direção. As escalares possuem apenas valor numérico. Força e velocidade são vetoriais. Massa e tempo são escalares.

 

A partir das respostas dos alunos, marque a alternativa correta:

A) Pedro e João estão corretos.

B) Somente João está correto.

C) Somente Pedro está correto.

D) João errou as definições e acertou os exemplos, e Pedro errou os exemplos e acertou as definições.

E) João acertou as definições e errou ao dar os exemplos. Pedro acertou os exemplos e errou ao dar as definições.

 

Resolução:

As definições dadas por João estão corretas. O erro cometido por ele foi classificar o empuxo como uma grandeza escalar. Os exemplos dados por Pedro estão corretos, mas ele cometeu erro ao dizer que as grandezas vetoriais possuem apenas módulo e direção, uma vez que o correto é módulo, direção e sentido.

Alternativa: E

 

04) A imagem a seguir mostra o deslocamento de uma partícula.

Marque a alternativa correta sabendo que o caminho AB possui 3 mm, BC possui 4 mm e que as retas AB e BC são perpendiculares.

A) O deslocamento vetorial da partícula é 7 mm.

B) A distância total percorrida pela partícula é 7 mm, e o deslocamento é 5 mm.

C) Tanto a distância total percorrida quanto o deslocamento da partícula são iguais a 7 mm.

D) A determinação do deslocamento vetorial é dada pela soma das distâncias AB e BC.

E) Mesmo que o ângulo entre as retas AB e BC fosse diferente, o deslocamento vetorial seria igual a 5 mm.

 

Resolução:

A distância total percorrida é a soma de cada uma das etapas feitas pela partícula, ou seja:

AB + BC = 3 mm + 4 mm = 7 mm

O deslocamento é a reta que une o ponto de partida ao ponto de chagada. Assim, a figura formada é um triângulo retângulo, e a hipotenusa desse triângulo corresponde ao deslocamento AC da partícula.

Aplicando o teorema de Pitágoras, temos:

AC2 = AB2 + BC2

AC2 = 32 + 42

AC2 = 9 + 16

AC2 = 25

AC = 5 mm

Alternativa: B

 

  

MOVIMENTO CIRCULAR

Um movimento circular é aquele em que o objeto ou ponto material se desloca em uma trajetória circular. Neste tipo de movimento, existe uma força centrípeta que muda a direção do vetor velocidade e é aplicada para o centro do círculo. A força centrípeta também é responsável pela aceleração centrípeta, a qual é orientada para o centro da circunferência-trajetória.

 

Movimento Circular Uniforme (MCU) - No movimento uniforme, o móvel percorre distâncias iguais em intervalos de tempo iguais. No caso particular do movimento circular uniforme, como a trajetória é circular, decorre que o intervalo de tempo de cada volta completa é sempre o mesmo, isto é, de tempos em tempos iguais o móvel passa pela mesma posição. Portanto o MCU é um movimento periódico. Seu período T é o intervalo de tempo de uma volta completa. O número de voltas na unidade de tempo é sua frequência f.

 

 

EXERCÍCIOS RESOLVIDOS - MOVIMENTO CIRCULAR UNIFORME

01) (MACK-SP) Devido ao movimento de rotação da Terra, uma pessoa sentada sobre a linha do Equador tem velocidade escalar, em relação ao centro da Terra, igual a:

Adote: Raio equatorial da Terra = 6 300 km e π = 22
                                                                               7

A) 2250 Km/h

B) 1650 Km/h

C) 1300 Km/h

D) 980 Km/h

E) 460 Km/h

 

Resolução:

Sabemos que a velocidade angular pode ser dada por  w = 2 π e que a velocidade linear é fruto do produto da velocidade angular          T       pelo raio da trajetória. Sendo assim, temos:

v = w . R

v = 2 π . R
T

Sabendo que o período de rotação da Terra é de 24h, temos:

v = 2 . 22 . 6300
 7  
24

v = 2 . 22 . 6300 . 
            7             24

v = 277200
     168

v = 1650 km/h

Alternativa: B

 

02) (UFCE) Um automóvel se desloca em uma estrada horizontal com velocidade constante de modo tal que os seus pneus rolam sem qualquer deslizamento na pista. Cada pneu tem diâmetro D = 0,50 m, e um medidor colocado em um deles registra uma frequência de 840 rpm.

 

A velocidade do automóvel é de:

A) 3 π m/s

B) 4 π m/s

C) 5 π m/s

D) 6 π m/s

E) 7 π m/s

 

Resolução:

- Para encontrar o valor da frequência em Hz, basta dividi-la por 60. Logo, f = 14 Hz.

- O raio do pneu é dado pela metade de seu diâmetro, portanto: R = 0,25 m

- Da relação entre velocidade linear e velocidade angular, temos:

v = w . R

v = 2. π . f . R

v = 2 . π . 14 . 0,25

v = 7 π m/s

 

Alternativa: E

 

03) (UFPR) Um ponto em movimento circular uniforme descreve 15 voltas por segundo em uma circunferência de 8,0 cm de raio.

 

A sua velocidade angular, o seu período e a sua velocidade linear são, respectivamente:

A) 20 rad/s; (1/15) s; 280 π cm/s

B) 30 rad/s; (1/10) s; 160 π cm/s

C) 30 π rad/s; (1/15) s; 240 π cm/s

D) 60 π rad/s; 15 s; 240 π cm/s

E) 40 π rad/s; 15 s; 200 π cm/s

 

Resolução:

A frequência do ponto em movimento é 15 Hz, e o raio da trajetória circular, 8 cm. Sendo assim, temos:

- A velocidade angular: w = 2. π . f = 2 . π . 15 = 30 π Rad/s

- Período (T): é dado pelo inverso da frequência → T = s
                                                                                      f    15

- A velocidade linear: v = w . Rv = 30 π . 8v = 240 π m/s

Alternativa: C

 

04) O tacômetro é um equipamento que fica no painel do carro para indicar ao motorista em tempo real qual é a frequência de rotação do motor.

Supondo que um tacômetro esteja indicando 3000 rpm, determine a velocidade angular de rotação do motor em rad/s.

A) 80 π

B) 90 π

C) 100 π

D)150 π

E)200 π

 

Resolução:

O valor da frequência em rpm, ao ser dividido por 60, é transformado em Hz. Sendo assim, a frequência de rotação do motor é de 50 Hz.

A velocidade angular é dada por

w = 2. π.f

w = 2. π. 50

w = 100 π rad/s

Alternativa: C

 

05) Uma serra circular possui 30 cm de diâmetro e opera com frequência máxima de 1200 rpm. Determine a velocidade linear de um ponto na extremidade da serra.

Adote: π = 3

A) 12 m/s

B) 14 m/s

C) 16 m/s

D) 18 m/s

E) 20 m/s

 

Resolução:

O raio da serra é metade de seu diâmetro, sendo, portanto, de 15 cm ou 0,15m. O valor da frequência em rpm pode ser dividido por 60 e ser transformado para Hz. Então, temos f = 20 Hz.

Da relação entre velocidade linear e velocidade angular, temos:

v = w . R

v = 2. π . f . R

v = 2 . 3 . 20 . 0,15

v = 18 m/s

Alternativa: D

 

06) Um eucalipto encontra-se plantado perpendicularmente a uma superfície plana. A árvore é cortada junto ao chão e leva 4s para deixar a posição vertical e ficar no chão na posição horizontal.

Determine o valor aproximado da velocidade angular média de queda desse eucalipto.

Adote: π = 3,14

 

A) 0,30 rad/s

B) 0,40 rad/s

C) 0,50 rad/s

D) 0,56 rad/s

E) 0,70 rad/s

 

Resolução:

Ao cair, o eucalipto descreve um arco de 90° ou  π  rad/s. A velocidade angular pode ser definida                                                           2

como a razão entre o ângulo percorrido pelo intervalo de tempo. Sendo assim, temos:

w = Δθ
      Δt

w = π
      
      4

w = π1
       2   4

w = π
      8

w = 3,14 ≈ 0,40 rad/s
8      

Alternativa: B

 

 

Movimento Circular Uniformemente Variado (MCUV)

Movimento Circular Uniformemente Variado - É aquele que possui velocidade variável e a aceleração angular constante é diferente de zero. Aqui a aceleração é designada pela letra grega gama (γ) e a velocidade angular pela letra ômega (ω). As equações que determinam os MUCV são muito semelhantes às do movimento retilíneo uniformemente variado (MRUV).

 

Aceleração Centrípeta -  É ela que provoca a variação da direção do vetor velocidade.

 

Força centrípeta é a força resultante que puxa o copro  para o centro da trajetória em um movimento curvilíneo ou circular.

 

Em todo movimento circular existe uma força resultante na direção radial que atua como força centrípeta, de modo que a força centrípeta não existe por si só. Por exemplo, o atrito entre o solo e o pneu do carro faz o papel da força centrípeta quando o carro faz curvas.

 

Existe uma força resultante na direção radial que atua como força centrípeta, de modo que a força centrípeta não existe por si só. Por exemplo, o atrito entre o solo e o pneu do carro faz o papel da força centrípeta quando o carro faz curvas. A força gravitacional faz o mesmo papel no movimento de satélites em torno da Terra.

 

 

EXERCÍCIOS – PERÍODO / FREQUÊNCIA (MCU)

01) (VUNESP) O tacômetro é o equipamento que mede o giro do motor de um carro e mostra, em tempo real para o motorista, o número de giros por minuto.

 

Determine a frequência em hertz e o período em segundos para o motor de um carro cujo tacômetro indica 3000 rpm.

A) 50 Hz e 2 x 10 – 2 s

B) 80 Hz e 1,5 x 10 – 2 s

C) 45 Hz e 2,5 x 10 – 2 s

D) 55 Hz e 2,5 x 10 – 2 s

E) 60 Hz e 2 x 10 – 2 s

 

Resolução:

Para transformar uma frequência dada em rpm para hertz, basta dividir o valor por 60, já que 1 minuto possui 60 s. Portanto, a frequência indicada pelo tacômetro será:

f = 3000 rpm ÷ 60 = 50 Hz

Sabendo que o período é o inverso da frequência, temos:

T = 1 = 0,02 = 2 x 10 – 2
     50

Alternativa: A

 

02) PUC) A respeito do período e da frequência no movimento circular uniforme (MCU), indique o que for correto.

A) O período é diretamente proporcional à frequência de giro de um corpo em MCU.

B) Sabendo que o período de giro do ponteiro dos minutos é de 1 min, podemos dizer que a sua frequência será,

aproximadamente, de 0,017 Hz.

C) Se a frequência do ponteiro dos segundos é de 1 min, podemos calcular a sua frequência aproximada como de 0,017 Hz.

D) A frequência é diretamente proporcional ao período.

E) Um corpo de giro com frequência de 20 Hz possui período igual a 0,02 s.

 

Resolução:

A frequência do ponteiro dos segundos é exatamente 60 s (1 min). Podemos determiná-la sabendo que ela é o inverso do período, portanto:

f = 1 = 0,0166 ≈ 0,017 Hz
    60

Alternativa: C

 

03) Vunesp) Marque a alternativa que indica o período de revolução de um satélite geoestacionário.

A) 48h

B) 12h

C) 72h

D) 24h

E) 10h

 

Resolução:

Os satélites chamados de geoestacionários são aqueles que giram sobre um ponto da Linha do Equador e que possuem período igual à rotação da Terra, logo, o período de revolução desses equipamentos é de 24 h.

Alternativa: D

 

04) (Fuvest) O período de translação da lua ao redor da Terra corresponde a 28 dias, sendo assim, determine a porcentagem diária aproximada da translação da lua.

A) 3,6 %

B) 6,5 %

C) 7,5 %

D) 4,0 %

E) 3,0 %

 

Resolução:

Se determinarmos a frequência de translação da lua, teremos:

f =  1 = 0,035 rotação por dia
     28 dias

Podemos concluir, portanto, que, a cada dia, a lua percorre 3,5% de um 1 giro completo.

Alternativa: A

 

05) (Metodista) Um corredor mantém em uma pista circular uma velocidade constante de 2 m/s e completa uma volta em 80 s.

Determine a frequência de giro do corredor e o tamanho da pista circular.

A) 0,00150 Hz e 180 m

B) 0,0125 Hz e 170 m

C) 0,0125 Hz e 160 m

D) 0,0325 Hz e 180 m

E) 0,0525 Hz e 160 m

 

Resolução:

O tempo de 80s corresponde exatamente ao período de rotação do corredor. Sabendo que a frequência é o inverso do período, temos:

f = 1 =0,0125 Hz
    80

A partir da equação da velocidade média, podemos encontrar o tamanho da pista:

v = Δs
     Δt

2 = Δs
      80

Δs = 2 . 80 = 160m

Alternativa: C

 

 

EXERCÍCIO – MOVIMENTO CIRCULAR UNIFORME (MCU)

01) (MACK-SP) Devido ao movimento de rotação da Terra, uma pessoa sentada sobre a linha do Equador tem velocidade escalar, em relação ao centro da Terra, igual a:

 

Adote: Raio equatorial da Terra = 6 300 km e π = 22/7

A) 2250 Km/h

B) 1650 Km/h

C 1300 Km/h

D) 980 Km/h

E) 460 Km/h

 

02) (UFCE) Um automóvel se desloca em uma estrada horizontal com velocidade constante de modo tal que os seus pneus rolam sem qualquer deslizamento na pista. Cada pneu tem diâmetro D = 0,50 m, e um medidor colocado em um deles registra uma frequência de 840 rpm.

A velocidade do automóvel é de:

A) 3 π m/s

B) 4 π m/s

C) 5 π m/s

D) 6 π m/s

E) 7 π m/s

 

03) (UFPR) Um ponto em movimento circular uniforme descreve 15 voltas por segundo em uma circunferência de 8,0 cm de raio.

A sua velocidade angular, o seu período e a sua velocidade linear são, respectivamente:

A) 20 rad/s; (1/15) s; 280 π cm/s

B) 30 rad/s; (1/10) s; 160 π cm/s

C) 30 π rad/s; (1/15) s; 240 π cm/s

D) 60 π rad/s; 15 s; 240 π cm/s

E) 40 π rad/s; 15 s; 200 π cm/s

 

04) (FEI) O tacômetro é um equipamento que fica no painel do carro para indicar ao motorista em tempo real qual é a frequência de rotação do motor. Supondo que um tacômetro esteja indicando 3000 rpm, determine a velocidade angular de rotação do motor em rad/s.

A) 80 π

B) 90 π

C) 100 π

D)150 π

E)200 π

 

05) (Fuvest) Uma serra circular possui 30 cm de diâmetro e opera com frequência máxima de 1200 rpm. Determine a velocidade linear de um ponto na extremidade da serra.

 

Adote: π = 3

A) 12 m/s

B) 14 m/s

C) 16 m/s

D) 18 m/s

E) 20 m/s

 

06) (Metodista) Um eucalipto encontra-se plantado perpendicularmente a uma superfície plana. A árvore é cortada junto ao chão e leva 4s para deixar a posição vertical e ficar no chão na posição horizontal.

Determine o valor aproximado da velocidade angular média de queda desse eucalipto.

 

Adote: π = 3,14

A) 0,30 rad/s

B) 0,40 rad/s

C) 0,50 rad/s

D) 0,56 rad/s

E) 0,70 rad/s

 

GABARITO:  01B  - 02E – 03E – 04E – 05D – 06B.

 

 

EXERCÍCIOS - MOVIMENTO CIRCULAR UNIFORMEMENTE VARIADO (MCUV)

01) (UNESP) Um “motorzinho” de dentista gira com frequência de 2000 Hz até a broca de raio 2,0mm encostar no dente do paciente, quando, após 1,5s, passa a ter frequência de 500Hz. Determine o módulo da aceleração escalar média neste intervalo de tempo.

Resolução:

ω = ωo + y.t
2.Л.f = 2.Л.fo + y.t
2.Л.500 = 2.Л.2000 + y.1,5
1000. Л = 4000.Л + 1,5y
1,5y = -3000.Л
y = -3000.Л/1,5
y = -2000.Л rad/s²

Como a = y.r
Temos que: a = -2000.Л.2.10-3 = 4.Лm/s²

 

02) (PUC) O gráfico a seguir representa a velocidade angular, em função do tempo, de uma polia que gira ao redor de um eixo.

Com base nas informações contidas no gráfico, determine a aceleração angular desta polia e a quantidade de volta que ela dá no intervalo de tempo entre 0 e 40s.

 

Resolução:

ω = ωo + y.t
80. Л = 0 + y.40
40y = 80. Л
y = 80. Л/40
y = 2. Л rad/s²  -  aceleração angular.

φ = φo + ωo.t + y.t²/2
Δ φ = 0.40 + 2. Л.40²/2
Δ φ = 2. Л.40²/2
Δ φ = 1600.Л rad

Número de voltas = Δ φ/2. Л = 1600/2. Л = 800 = 8,0.10² voltas

 

03) (Fuvest) A velocidade angular de um móvel em trajetória circular é diminuída de 30.π rad/s para 20. π rad/s em um intervalo de tempo igual à 2s. Sabendo que o raio do círculo mede 0,5m e o movimento é uniformemente variado; determine a aceleração escalar deste móvel.

Resolução:

ω = ωo + y.t
20. π = 30. π + y.2
2.y = -10. π
y = -5. π rad/s

a = y.r
a = -5.0,5
a = 2,5m/s²

 

 

Distância entre o Sol e a Terra

Depois dos artigos superinteressante sobre o sol que fala da temperatura do sol de uma pergunta superinteressante chegamos a outra.

Sabemos que a distância entre a Lua e a Terra é de uns 300 mil quilômetros o que leva a luz entre a lua e a Terra percorrer esta distância em 1 segundo pois a velocidade da Luz é perto de 300 mil km/s.

Poucos sabem mas o tempo que a Luz leva para percorrer a distância entre o SOL e a Terra é de 8 minutos e uns 20 segundos ou seja 500 segundos.

 

 

Então, qual é a distância entre o sol e a terra?

A distância varia em relação a translação da Terra (movimento elíptico que a terra faz em torno do Sol, não confundir com o movimento de rotação que é o movimento que a terra faz em torno de si mesma).

Para chegar a esse numero só calcular aproximadamente 300 mil km x 500 segundos que é a velocidade da luz x o tempo que ela leva para percorrer o caminho entre o sol e a Terra.

Ou seja o sol esta quase 500 vezes mais longe do que a lua esta da Terra. o que da um resultado médio de 150 milhões de quilômetros.

Resultado médio pois em seu periélio (distância mais próxima do Sol) a Terra se encontra perto dos 147 milhões de quilômetros do Sol e em seu Afélio (maior distância do Sol) por volta de 152 milhões de quilômetros.

Como queremos saber é a distancia média que é de 149,6 milhões de quilômetros. (essa distância varia devido ao movimento elíptico da Terra em volta do Sol).

A primeira tentativa de calculo da distância entre a terra e o Sol aconteceu 200 anos AC onde Aristarque estimou a distância entre 1.7 milhões de km e 2.7 milhões de km, muito bom em relação a capacidade técnica presente naquela época.

Foi Nicolau Copérnico que demonstrou que a Terra gira em torno do Sol criando a teoria do Heliocentrismo no século XVI, e Kepler descobriu que a terra tinha uma trajetória elíptica em torno do Sol calculando a distância dos planetas do Sol.

Mas somente no século XX que chegamos a números próximos da real distância entre a Terra e o Sol

 

 

Caso 1: - É possível estudar dois ou mais corpos descrevendo simultaneamente a mesma trajetória porem com velocidades e sentidos diferentes.

 

Caso 2: No cotidiano ha situações em que é possível estudar o movimento de um ponto material como onde ele descreve a mesma trajetória porém com trecho com velocidades diferentes.

 

EXERCÍCIOS - QUESTÕES RESOLVIDAS

01) (PUC) Um macaco que pula de galho em galho em um zoológico, demora 6 segundos para atravessar sua jaula, que mede 12 metros. Qual a velocidade média dele?

 

Resolução:

S=12m

t=6s

v=?

 

 

02) (Fuvest) Um carro viaja de uma cidade A a uma cidade B, distantes 200km. Seu percurso demora 4 horas, pois decorrida uma hora de viagem, o pneu dianteiro esquerdo furou e precisou ser trocado, levando 1 hora e 20 minutos do tempo total gasto. Qual foi a velocidade média que o carro desenvolveu durante a viagem?

 

Resolução:

S=200km

t=4h

v=?

Mesmo o carro tendo ficado parado algum tempo durante a viagem, para o cálculo da velocidade média não levamos isso em consideração.

 

03) (Fuvest) No exercício anterior, qual foi a velocidade nos intervalos antes e depois de o pneu furar? Sabendo que o incidente ocorreu quando faltavam 115 km para chegar à cidade B.

 

Resolução:

Antes da parada:

S= 200-115=85km

t=1hora

v=?

Depois da parada:

S= 115km

t= 4h-1h-1h20min= 1h40min=1,66h (utilizando-se regra de três simples)

v=?

 

04) (Unesp) Um bola de basebol é lançada com velocidade igual a 108m/s, e leva 0,6 segundo para chegar ao rebatedor. Supondo que a bola se desloque com velocidade constante. Qual a distância entre o arremessador e o rebatedor?

Resolução:

se isolarmos S:

 

05) (Vunesp) Durante uma corrida de 100 metros rasos, um competidor se desloca com velocidade média de 5m/s. Quanto tempo ele demora para completar o percurso?

Resolução:

, se isolarmos t:

 

06) (PUC) Um carro desloca-se em uma trajetória retilínea descrita pela função S=20+5t (no SI). Determine:

(a) a posição inicial;

(b) a velocidade;

(c) a posição no instante 4s;

(d) o espaço percorrido após 8s;

(e) o instante em que o carro passa pela posição 80m;

(f) o instante em que o carro passa pela posição 20m.

 

Comparando com a função padrão: 

(a) Posição inicial = 20m

(b) Velocidade = 5m/s

 

(c) S= 20+5t

S= 20+5.4

S= 40m

(d) S= 20+5.8

S= 60m

(e) 80= 20+5t

80-20=5t

60=5t

12s =t

(f) 20= 20+5t

20-20= 5t

t=0

 

07) (PUC) Em um trecho de declive de 10km, a velocidade máxima permitida é de 70km/h. Suponha que um carro inicie este trecho com velocidade igual a máxima permitida, ao mesmo tempo em que uma bicicleta o faz com velocidade igual a 30km/h. Qual a distância entre o carro e a bicicleta quando o carro completar o trajeto?

Resposta:

Carro:

S=10km

v=70km/h

t=?

S=70t

10=70t

0,14h=t

t=8,57min (usando regra de três simples)

 

Bicicleta:

O tempo usado para o cálculo da distância alcançada pela bicicleta, é o tempo em que o carro chegou ao final do trajeto: t=0,14h

Resposta:

v=30km/h

t=0,14h

S=?

S=0+30.(0,14)

S=4,28Km

 

08) (UEL-PR) O gráfico a seguir mostra as posições em função do tempo de dois ônibus. Um parte de uma cidade A em direção a uma cidade B, e o outro da cidade B para a cidade A. As distâncias são medidas a partir da cidade A. A que distância os ônibus vão se encontrar?

Para que seja possível fazer este cálculo, precisamos saber a velocidade de algum dos dois ônibus, e depois, calcular a distância percorrida até o momento em que acontece o encontro dos dois, onde as trajetórias se cruzam.

Calculando a velocidade ônibus que sai da cidade A em direção a cidade B (linha azul)

 

Resolução:

Sabendo a velocidade, é possível calcular a posição do encontro, quando t=3h.

 

09) (Vunesp) Um carro, se desloca a uma velocidade de 20m/s em um primeiro momento, logo após passa a se deslocar com velocidade igual a 40m/s, assim como mostra o gráfico abaixo. Qual foi o distância percorrida pelo carro?

Tendo o gráfico da v x t, o deslocamento é igual à área sob a reta da velocidade.

 

Resolução:

S= Área A + Área B

S=20 5 + 40 (15-5)

S=100+400

S=500m

 

10) (Fei) Dois trens partem simultaneamente de um mesmo local e percorrem a mesma trajetória retilínea com velocidades, respectivamente, iguais a 300km/h e 250km/h. Há comunicação entre os dois trens se a distância entre eles não ultrapassar 10km. Depois de quanto tempo após a saída os trens perderão a comunicação via rádio?

Para este cálculo estabelece-se a velocidade relativa entre os trens, assim pode-se calcular o movimento como se o trem mais rápido estivesse se movendo com velocidade igual a 50km/h (300km/h-250km/h) e o outro parado.

 

Resolução:

Assim:

v=50km/h

S=10km

t=?

 

 

 

EXERCÍCIOS ESPECIAIS DE VELOCIDADE MÉDIA - (MRU)

01) Um veículo percorre metade de um trecho com uma velocidade constante de 60 km/h e a outra metade do trecho com velocidade constante de 90km/h. Qual a velocidade média no percurso todo?

A) 50km/h

B) 75km/h

C) 72km/h

D) 80 km/h

E) 90 km/h

 

Resolução:

A velocidade média é calculada pela distância percorrida dividida pelo tempo gasto.

 

Para resolver a conta é preciso trocar os tempos pelas velocidades (que são conhecidas).

Assim: 

 

Substituindo na equação anterior:

Alternativa: C

 

Observação: você pode aplicar a fórmula  a seguir (o MMC pronto para a substituição).

 

Observação: ha casos em que o enunciado diz que o móvel foi e voltou com velocidades diferentes. Sempre que você perceber que as distâncias percorridas forem iguais, as velocidades forem diferentes, e ele quiser saber a velocidade média em todo o percurso, você pode aplicar o raciocínio matemático (produto pela soma).

duas vezes o produto  das velocidades, dividida pela soma das velocidades

- três vezes o produto  das velocidades, dividida pela soma das velocidades

 

 

Mais tenha muito cuidado com o enunciado da questão.

02) (Enem/2016) Uma empresa de transportes precisa efetuar a entrega de uma encomenda o mais breve possível. Para tanto, a equipe de logística analisa o trajeto desde a empresa até o local da entrega. Ela verifica que o trajeto apresenta dois trechos de distâncias diferentes e velocidades máximas permitidas diferentes. No primeiro trecho, a velocidade máxima permitida é de 80 km/h e a distância a ser percorrida é de 80 km. No segundo trecho, cujo comprimento vale 60 km, a velocidade máxima permitida é 120 km/h.

Supondo que as condições de trânsito sejam favoráveis para que o veículo da empresa ande  continuamente na velocidade máxima permitida, qual será o tempo necessário, em horas, para a realização da entrega?

A) 0,7

B) 1,4

C) 1,5

D) 2,0

E) 3,0

 

Resolução:

Observação: pelo enunciado entende-se que as distâncias em cada trecho o são iguais, e as velocidades também são diferentes ele quiser saber o tempo total. Neste caso é um exercícios simples, para isso basta encontrar o tempo gasto em cada trecho (t1 e T2) e somar os dois tempos.

 

Vm1 = 80

t1 = x

ΔS1 = 80

Vm1 = ΔS/t1

80 = 80/t1

08t1 = 80

t1 = 80/80

T1 = 1h

Vm2 = 120

t2 = x

ΔS1 = 60

Vm2 = ΔS/t1

120 = 60/t1

120t1 = 60

t1 = 60/120

T1 = 0,5h

 

T total = T1 + T2 

total = 1,0 + 0,5

T total = 1,5h

Alternativa: C

 

 

 

CORPOS EXTENSOS – (MRU)

03) Uma composição ferroviária com 1 locomotiva e 14 vagões desloca-se à velocidade constante de 10m/s. Tanto a locomotiva quanto cada vagão medem 12m. Então, quanto tempo ela demorará para atravessar um viaduto com 200m de comprimento?

 

Resolução:

Neste caos os dois o trem e o viaduto são corpos extensos, portanto tenho que considerar o tamanho do trem e o tamanho do viaduto.

- Tamanho do trem é 15 . 12 = 180 m.

- Tamanho do trem é 200 m.

ΔS = 180 + 200

ΔS = 380 m.

O tempo necessário para que o trem atravesse a ponte será:

Δt = ΔS/Vm

Δt = 380/10 = 38.

Resposta: o tempo de travessar será de 38s.

 

04) Uma composição ferroviária com 1 locomotiva e 14 vagões desloca-se à velocidade constante de 10m/s. Tanto a locomotiva quanto cada vagão medem 12m. Então, quanto tempo ela demorará para atravessar um sinaleiro

 

Resolução:

Neste caos apenas o trem e considerado corpo extenso, portanto devo considerar apenas o tamanho do trem.

- Tamanho do trem é 15 . 12 = 180 m.

O tempo necessário para que o trem atravesse o sinalerio será:

Δt = ΔS/Vm

Δt = 200/10 = 38

Δt = 20s

 

 

ENCONTRO DE DOIS MÓVEIS/ MESMO SENTIDO – (MRU)

05) Um móvel em uma rodovia sai da posição 18km e anda de acordo com o sentido positivo da trajetória com velocidade constante de 30km/h. Outro móvel sai da posição 2km e anda no sentido positivo da trajetória com velocidade constante de 50km/h. Determine o ponto onde os dois móveis se encontrarão.

A) 30 km

B) 38 km

C) 40 km

D) 42 km

E) 50 km

 

Resolução:

Função horária da posição para cada um dos móveis:

S1 = 18 + 30.t

S2 = 2 + 50.t

No momento do encontro, as posições dos móveis serão as mesmas, sendo assim, igualando as funções acima, teremos:

S1 = S2

18 + 30.t = 2 + 50.t

20.t = 16

t = 0,8h

O tempo para o encontro é de 0,8h. Assim, a posição de encontro para os móveis é:

S1 = 18 + 30.t

S1 = 18 + 30.0,8

S1 = 42 km

 

S2 = 2 + 50.t

S2 = 2 + 50.0,8

S2 = 42 km

Alternativa: D

 

06) Dois carros, A e B, de dimensões desprezíveis, movem-se em movimento uniforme e no mesmo sentido com velocidades iguais a 20m/s e 15m/s, respectivamente. No instante t = 0, os carros encontram-se nas posições:

S0A = 30m 

S0B = 180m

Responda:

a) depois de quanto tempo A alcança B.

S = So + v.t

SA = 30 + 20.t

SB = 180 + 15.t

Iguale as funções

SA = SB

30 + 20.t = 180 + 15.t

5.t = 150

t = 30s

b) em que posição ocorre o encontro.

Substituir o valor do instante de encontro em uma das funções horárias. Usando a função horária do espaço de A, tem-se:

SA = 30 + 20.t

SA = 30 + 20. 30

SA = 630 m

Resposta: o encontro acontece após 30s e na posição 630m.

 

07) Duas cidades, A e B, distam entre si 400km. Da cidade A parte um móvel P dirigindo-se à cidade B; no mesmo instante, parte do B outro móvel Q dirigindo-se a A. Os móveis P e Q executam movimentos uniformes e suas velocidades escalares são de 30km/h e 50km/h, respectivamente.  A distância da cidade A ao ponto de encontro dos móveis P e Q, em km, vale:

A) 120

B) 150

C) 200

D) 240

E) 250

 

Resolução

S = So + v.t

SP = 0 + 30.t

SQ = 400 - 50.t (movimento é retrógrado -V)

Agora se igualam as funções:

SP = SQ

30.t = 400 - 50.t

80.t = 400

t = 5

Substituindo o valor do instante de encontro em uma das funções horárias encontraremos a posição de encontro..

SP = 30.t

SP = 30 . 5

SP = 150

Alternativa: B

 

 

VELOCIDADE RELATIVA ENTRE DOIS MÓVEIS – (MRU)

08) Três móveis AB e C, encontram-se numa trajetória retilínea descrevendo movimentos uniformes sendo que: VA = 5m/s, VB = 8m/s e VC = 4m/s. Sendo que A e B se movimentam-se no sentido favorável a trajetória e C movimenta-se no sentido contrário a trajetória.

 

Determine:

a) a velocidade de A em relação a B;

VAB = VA - VB

VAB = 5 – 8

VAB = - 3 m/s

 b) a velocidade de B em relação a C;

VBC = VB – VC

VBC = 8 – (-4)

VBC = 12 m/s

c) a velocidade de em relação a A.

VCA = VC - VA

VCA = -4 - 5

VCA = - 9 m/s

 

 

ENCONTRO DE DOIS MÓVEIS COM VELOCIDADE RELATIVA – (MRU)

09) Dois carros, A e B, movem-se no mesmo sentido, em uma estrada reta, com velocidades constantes VA = 100km/h e VB = 80km/h. Responda:

 

Resolução:

a) Qual é, em módulo, a velocidade do carro B em relação a um observador no carro A?

VR = | VB - VA |

|VR| = |80 - 100|

|VR| = 20 km/h =20/3,6 m/s

 

b) Em um dado instante, o carro B está 600 m à frente do carro A. Quanto tempo, em horas, decorre até que A alcance B?

DSR = 600 m

O tempo para ocorrer o encontro é:

DSR = |VR| . t

600 = 20/3,6 . t

t = 108s

Resposta: O módulo da velocidade do carro B em relação ao carro A é 20 km/h e o tempo para que o carro A alcance o carro B é 108s

 

 

EXERCÍCIO ESPECIAL  - (MRUV)

10) (Enem 2017) Um motorista que atende a uma chamada de celular é levado a desatenção, aumentando a possibilidade de acidente ocorrerem em razão ao aumento do seu tempo de reação. Considere dois motoristas, o primeiro atento e o segundo utilizando o celular enquanto dirige. Eles aceleram seus carros inicialmente a 1,00 m/s2. Em resposta a uma emergência, freiam com uma desaceleração igual a 5,00 ms2. O motorista atento aciona o freio à velocidade de 14,0m/s, enquanto o desatento, em situação análoga, leva 1,00 segundo a mais para iniciar a frenagem.

Que distância o motorista desatento percorre a mais do que o motorista atento, até a parada total dos carros?

A) 2,90 m

B) 14,0 m

C) 14,5 m

D) 15,0 m

E) 17,4 m

 

Resolução:

Motorista atento:

O motorista desatendo levou 1 segundo para pisar no freio o que temos: V1=14m/s e V2 = 15m/s. Nesse intervalos a distância percorrida é dada pela fórmula.

ΔS1/ Δt = (V1 + V2)/2

ΔS1/ 1 = (14 + 15)/2

ΔS1 = 14,5m

Observação: não temos o tempo de frenagem e quanto o tempo não é dado podemos aplicar a equação de Torricelli para cada um dos motoristas.

 

Motorista atento:

V2 = Vo2 + 2a. ΔS

02 = 142 + 2 . -5ΔS

0 = 196 - 10ΔS

-196 = -10ΔS

-56/-10 = ΔS

ΔS2 = 19,6m

Motorista desatento:

V2 = Vo2 + 2a. ΔS

02 = 152 + 2 . -5 ΔS

0 = 225 - 10ΔS

-225 = -10ΔS

-225/-10 = ΔS

ΔS3 = 22,5m

Temos:

ΔS1 = 14,5m

ΔS2 = 19,6m

ΔS2 = 37m

Espaço percorrido em cada situação

ΔS1 = 14,5m

ΔS2 = 19,6m

ΔS3 = 22,5m

 

Motorista desatento:

ΔS1  antes de iniciar a frenagem

ΔS3 durante a frenagem.

 

Motorista atento: :

ΔSdurante a fenagem ele percorreu.

 

Pergunta: Que distância o motorista desatento percorre a mais do que o motorista atento, até a parada total dos carros?

Fazendo a (distância percorrida do motorista desatento) menos a (distância percorrida pelo motorista atento) temos:

(ΔS1 + ΔS3) - ΔS2

(14,5 + 22,5) - 19,6

17,4

 

Alternativa: E

 

 

 

MARCO ZERO DE SÃO PAULO

Inaugurado em 18 de setembro de 1934, o Marco Zero foi uma ideia elaborada vários anos antes, precisamente em 1921, quando o local ainda era conhecido popularmente como “Largo da Catedral” que ainda encontrava-se em obras. O projeto e local de construção do monumento surgiu das mãos do Dr. Américo Netto, à época diretor da Associação Paulista de Boas Estradas (órgão extinto no final dos anos 20).

Entretanto o Marco Zero caiu no esquecimento e só voltou a ser discutido no final de 1933, quando o braço paulista do Touring Clube do Brasil procurou a prefeitura para sugerir a instalação do marco, que foi prontamente aceito.

Totem hexagonal feito em autêntico mármore paulista e com base em granito, o marco tem uma altura que permite a qualquer adulto consultar facilmente a placa de bronze fixada em seu tampo. As laterais do marco possuem direções para 6 importantes pontos do Brasil, cada uma delas com uma ilustração que caracteriza a região mostrada.

Na foto, Minas Gerais, Goiás e Mato Grosso

A cidade de Santos (direção sudeste) é representada por um navio a vapor, o Estado do Paraná (direção sul) por uma Araucária, Rio de Janeiro (direção nordeste) com uma bananeira e o Pão de Açúcar, Minas Gerais (direção norte) com equipamento de mineração, Goiás (noroeste) a bateia usada no garimpo e Mato Grosso (direção sudoeste) com as indumentárias dos bandeirantes.

Em seu tampo, a placa de bronze tem um mapa parcial da Cidade de São Paulo, com o símbolo e a oferta do Touring Club do Brasil, e as principais vias paulistanas daquela época identificadas, como as avenidas Celso Garcia, Paulista e São João, além de locais de interesse público, como o Museu do Ipiranga e a Faculdade de Medicina. Um detalhe curioso a se observar é a ilha, já desaparecida, que havia no rio Tietê. Hoje ali existe o Shopping Center Norte.

Outro ponto importante a salientar sobre o Marco Zero de São Paulo é que ele não só serve como um importante ponto turístico da cidade. Ele primeiramente serve ao propósito de que o próprio nome já indica, representando o centro geográfico do município, de onde todas as medições de distâncias das placas toponímicas paulistanas se iniciam.

É por este motivo que as numerações dos logradouros da cidade são mais baixos no ponto mais próximo ao centro e mais distantes a medida que se afastam dele. Se alguém disser para você ir no número 100 da avenida São João, por exemplo, você já sabe que o 100 fica no ponto mais próximo ao centro, e não no outro lado na região da Barra Funda.

Em 2007 o Marco Zero foi definitivamente tombado pelo órgão municipal responsável pelo patrimônio histórico da cidade, ano também que a obra recebeu uma restauração.

 

DO MARCO ZERO AO SACI PERERÊ

Quando observamos os belos desenhos que representam as regiões brasileiras nas laterais do marco, não há qualquer menção ao artista. Porém, a obra é fruto do trabalho de um grande ilustrador francês: Jean Gabriel Villin.

Nascido em Amiens, França, em 1906, Jean Gabriel Villin mudou-se para o Brasil ainda jovem, em 1925, para ir trabalhar na cidade de Porto Ferreira (SP) como desenhista em um fábrica de louças. Ele ficaria naquela cidade até 1927, quando veio para a capital atendendo um convite para trabalhar como desenhista no serviço público.

Foi nesta época, quando já estava bem estabelecido em São Paulo, que acabou conhecendo a figura de Monteiro Lobato, que entre 1929 e 1930 o convidou para ilustrar seus livros. Seu primeiro trabalho com o grande escritor brasileiro foi na ilustração do livro Reinações de Narizinho. Villin também é conhecido por ter sido o primeiro a desenhar e imortalizar o personagem Saci.

O nome de Jean Gabriel Villin também é muito conhecido e respeitado na área de desenhos publicitários, onde também destacou-se com muito sucesso. Mesmo sendo de origem francesa, Villin colocava em seus trabalhos muito do folclore e coisas típicas do brasil, dando um cunho totalmente nacional para a nossa propaganda, razão que foi chamado em sua época de “o mais brasileiro dos publicitários brasileiros”. Faleceu em 1979.

Fonte: http://www.saopauloantiga.com.br/marco-zero/

Acessado em: 04/03/2018 às 15:44

 

Continua...